Translating fork specifications into logic programs

Authors

  • Gabriel Alfredo Baum LIFIA, Facultad de Informática, Universidad Nacional de La Plata, La Plata, Argentina
  • Nazareno Matías Aguirre Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina
  • Marcelo Arroyo Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina

Abstract

In this work a compiler from fork specifications into logic programs is presented. The technique implemented by the compiler consists of transforming a set of fork equations (with some restrictions) into normal logic programs in such a way that the semantics of the fork equations is preserved. After translating a fork specification, it can be executed by consulting the generated logic program. The fork compiler, a tool for the translation, is also introduced.

Downloads

Download data is not yet available.

References

[1] Aguirre, N., A logical interpretation of abstract fork specifications, in Proceedings of Workshop Argentino de Informática Teórica WAIT'99,28 o Jornadas Argentinas de Informática e Investigación Operativa 28 JAIIO, 1999.
[2] Apt, K.R., Blair, H.A., Walker, A., Towards a Theory of Declarative Knowledge, in J. Minker (Ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann Pub., Washington D.C., 1988.
[3] Baum, G.A., Frias, M.F., Haeberer, A.M. and Martínez López,P.E., From Specifications to Programs: AFork-algebraic Approach to Bridge the Gap, in Proceedings of MFCS'96, LNCS1113, Springer-Verlag, pp. 180-191,1996.
[4] Brink, C., Kahl, W. and Schmidt, G.(Eds.), Relational Methods in Computer Science, Springer, Wien New York, 1997.
[5] Frias, M. F., Baum, G. A. and Haeberer, A.M., Representability and Program Construction within Fork Algebras, to appear in Journal of the IGPL.
[6] Frias, M. F., Baum, G.A., Haeberer, A. M. and Veloso, P.A.S.,A Representation Theorem for Fork Algebras, (Technical Report) MCC. 29/93, PUC-RJ, August 1993.
[7] Frias, M. F., Baum, G. A., Haeberer, A.M. and Veloso, P. A.S., Fork Algebras are Representable, in Bulletin of the Section of Logic, University of Lodz, Vol. 24, No. 2, pp.64-75, 1995.
[8] Libra Programming Language, Department of Computer Science, University of Adelaide, Adelaide, South Australia, URL: www.cs.adelaide.edu.au/users/dwyer/TR95-10TOC.html.
[9] Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, 1987.
[10] Ralf System, Home Page of RelMiCS,URL: inf2-www.informatik.unibw-muenchen.de/Research/Tools/Ralf/ralfmanual.html.
[11] Relview System, Department of Computer Science and Applied Mathemathics, University of Kiel, Germany. URL: www.informatik.unikiel.de/~progsys/relview.html.

Downloads

Published

2001-05-01

How to Cite

Baum, G. A., Aguirre, N. M., & Arroyo, M. (2001). Translating fork specifications into logic programs. Journal of Computer Science and Technology, 1(04), 16 p. Retrieved from https://journal.info.unlp.edu.ar/JCST/article/view/995

Issue

Section

Original Articles

Most read articles by the same author(s)