Copyright and Licensing
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
Review Stats:
Mean Time to First Response: 89 days
Mean Time to Acceptance Response: 114 days
Member of:
ISSN
1666-6038 (Online)
1666-6046 (Print)