Wavelets bases defined over tetrahedra


  • Liliana Beatriz Boscardín Depto. de Matemática, Universidad Nacional del Sur Bahía Blanca, Argentina
  • Liliana Raquel Castro Depto. de Matemática, Universidad Nacional del Sur Bahía Blanca, Argentina
  • Silvia Mabel Castro Depto. de Cs. e Ing. de la Computación, Universidad Nacional del Sur Bahía Blanca, Argentina
  • Armando Eduardo De Giusti Facultad de Informática, Universidad Nacional de La Plata, La Plata, Argentina


multiresolution, lifting, volume modeling, wavelets


In this paper we define two wavelets bases over tetrahedra which are generated by a regular subdivision method. One of them is a basis based on vertices while the other one is a Haar-like basis that form an unconditional basis for Lp (T, Σ, μ), 1 < p < ∞, being μ the Lebesgue measure and Σ the σ - algebra of all tetrahedra generated from a tetrahedron T by the chosen subdivision method. In order to obtain more vanishing moments, the lifting scheme has been applied to both of them


Download data is not yet available.


[1] J. Bey, “Tetrahedral Grid Refinement”, Computing, Vol. 55, No. 4, pp. 355-378, 1995.
[2] F. Dong and J. Shi, “Multiresolution Data Modeling for Irregular Data Fields based on Wavelets”, IEEE IV, 1997.
[3] M. Girardi and W. Sweldens, “A New Class of Unbalanced Haar Wavelets that form an Unconditional Basis for Lpon General Measure Spaces, Journal of Fourier Analysis Appl., Vol. 3, pp. 457-474, 1997.
[4] D. J. Holliday and G. M. Nielson, “Progressive volume Models for Rectilinear Data using Tetrahedral Coons Volumes”, http://prism.asu.esu/research/data/publications/paper00pvmnitv.pdf, 2000.
[5] R. Lorentz and P. Oswald, “Multilevel Finite Riesz Basis for Sobolev Spaces”, Proc. of the 9th Int. Conference on Domain Decomposition Methods in Sc. and Eng., Domain Decomposition Press, pp. 178-187, 1998.
[6] J. M. Lounsbery, Multiresolution Analysis for Surfaces of Arbitrary Topological Type, PhD. Thesis, University of Washington, Washington, Seattle, 1994.
[7] S. Muraki, “Approximation and Rendering of Volume Data using Wavelet Transforms”, Proc. of Visualization’92, pp. 21-28, 1992.
[8] G. M. Nielson, I. H. Jung and J. Sung, “Haar Wavelets over Triangular Domains with Applications to Multiresolution Models for Flow over a Sphere”, IEEE Visualization ’97, 1997.
[9] P. Schröder and W. Sweldens, “Spherical Wavelets: Efficiently Representing Functions on the Sphere”, ACM Proceedings of SIGGRAPH’95, pp. 161-172, 1995.
[10] E. Stollnitz, T. DeRose and D. Salesin, Wavelets for Computer Graphics: Theory and Applications, Morgan & Kaufmann Publishers Inc., 1996.
[11] W, Sweldens, “The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions”, Proc. of the SPIE, vol. 2569, pp.68-79, 1995.
[12] W, Sweldens, “The Lifting Scheme:Custom-Design Construction of Biorthogonal Wavelets”, Appl. and Computational Harmonic Analysis, Vol.3, pp. 186-200, 1996.




How to Cite

Boscardín, L. B., Castro, L. R., Castro, S. M., & De Giusti, A. E. (2006). Wavelets bases defined over tetrahedra. Journal of Computer Science and Technology, 6(01), p. 46–52. Retrieved from https://journal.info.unlp.edu.ar/JCST/article/view/828



Original Articles

Most read articles by the same author(s)

1 2 3 > >>