Numerical simulation in Applied Geophysics. From the Mesoscale to the Macroscale

Authors

  • Juan E. Santos Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET ), Argentina
  • Patricia M. Gauzellino Depto. Geofísica Aplicada, Facultad de Cs. Astr. y Geofísicas, UNLP, Argentina
  • Gabriela B. Savioli Instituto del Gas y del Petróleo, Facultad de Ingeniería, UBA, Argentina
  • Robiel Martínez Corredor Facultad de Ingeniería, UNLP, Argentina

Keywords:

Poroelasticity, Anisotropy, Fractures, Finite elements, Numerical upscaling

Abstract

This paper presents a collection of finite element procedures to model seismic wave propagation at the macroscale taking into account the effects caused by heterogeneities occuring at the mesoscale. For this purpose we first apply a set of compressibility and shear experiments to representative samples of the heterogeneous fluid saturated material. In turn these experiments yield the effective coefficients of an anisotropic macroscopic medium employed for numerical simulations at the macroscale. Numerical experiments illustrate the implementation of the proposed methodology to model wave propagation at the macroscale in a patchy brine-CO2 saturated porous medium containing a dense set of parallel fractures.

Downloads

Download data is not yet available.

References

[1] M.A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range”, J. Acoust. Soc. Amer., Vol. 28, 1956, pp. 168-171.
[2] M.A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range”, J. Acoust. Soc. Amer., Vol. 28, 1956, pp. 179-191.
[3] M.A. Biot, “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., Vol. 33, 1962, pp. 1482-1498.
[4] J.M. Carcione, Wave fields in real media: Wave propagation in anisotropic, anelastic and porous media, in Handbook of Geophysical Exploration, 2nd edn , Oxford: Elsevier, 2007.
[5] J.E. White, N.G. Mikhaylova, F.M. Lyakhovitskiy “Low-frequency seismic waves in fluid saturated layered rocks”, Physics of the Solid Earth, Vol. 11, 1975, pp. 654-659.
[6] E.H. Saenger, R. Ciz, O.S. Krüger, S.M. Schamalholz, B. Gurevich, S.A. Shapiro “Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress”, Geophysics, Vol. 72, 2007, pp. SM293-SM300.
[7] S. Gelinsky, S.A. Shapiro “Poroelastic Backus-averaging for anisotropic, layered fluid and gas saturated sediments”, Geophysics, Vol. 62, 1997, pp. 1867-1878.
[8] F. Krzikalla, T. Müller “Anisotropic P-SV-wave dispersion and attenuation due to interlayer flow in thinly layered porous rocks”,
Geophysics, Vol. 76, 2011, pp. W-135.
[9] V. Grechka, M. Kachanov “Effective elasticity of rocks with closely spaced and intersecting cracks”, Geophysics, Vol. 71, 2006, pp. D85-D91.
[10] V. Grechka, M. Kachanov “Effective elasticity of fractured rocks: A snapshot of the work in progress”, Geophysics, Vol. 71, 2006, pp. W45-W58.
[11] S. Picotti, J.M. Carcione, J. Santos, D. Gei “Q-anisotropy in finely-layered media”, Geophys. Res. Lett., Vol. 37, 2010, pp. L06302.
[12] J. Santos, J.M. Carcione, S. Picotti “Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments”, Comput. Methods Appl. Mech. Engrg., Vol. 200, 2011, pp. 896-904.
[13] J.M. Carcione, J. Santos, S. Picotti “Anisotropic poroelasticity and wave-induced fluid flow. Harmonic finite-element simulations”, Geophysics Journal International , Vol. 186, 2011, pp. 1245-1254.
[14] M. Krief, J. Garat, J. Stellingwerff, J. Ventre “A petrophysical interpretation using the velocities of P and S waves (full waveform sonic)”, The Log Analyst, Vol. 31, 1990, pp. 355-369.
[15] J.M. Carcione, B. Gurevich, F. Cavallini “A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones”, Geophys. Prosp., Vol. 48, 2000, pp. 539-557.
[16] P. Gauzellino, J. Santos “Frequency domain wave propagation modeling in exploration seismology”, Journal of Computational Acoustics, Vol. 9, 2001, pp. 941-955.
[17] T. Ha, J. Santos, D. Sheen “Nonconforming finite element methods for the simulation of waves in viscoelastic solids”, Comput. Methods Appl. Mech. Engrg, Vol. 191, 2002, pp. 5647-5670.
[18] F. Zyserman, P. Gauzellino, J. Santos “Dispersion analysis of a nonconforming finite element method for the Hemholtz and elasto-dynamic equations”, International Journal for Numerical Methods in Engineering, Vol. 58, 2003, pp. 1381-1395.
[19] P. Gauzellino, F. Zyserman, J. Santos “Non-conforming finite element methods for the three-dimensional Helmholtz equation: iterative domain decomposition or global solution ?”, Journal of Computational Acoustics, Vol. 17, 2009, pp. 159-174.

Downloads

Published

2018-04-01

How to Cite

Santos, J. E., Gauzellino, P. M., Savioli, G. B., & Martínez Corredor, R. (2018). Numerical simulation in Applied Geophysics. From the Mesoscale to the Macroscale. Journal of Computer Science and Technology, 13(03), p. 137–142. Retrieved from https://journal.info.unlp.edu.ar/JCST/article/view/593

Issue

Section

Original Articles