Multi-Criteria Decision Model based on AHP and Linguistic Information

Authors

  • Marcelo J. Karanik Grupo de Investigación Sobre Inteligencia Artificial, Universidad Tecnológica Nacional Facultad Regional Resistencia, Resistencia, Chaco, Argentina
  • Sergio D. Gramajo Grupo de Investigación Sobre Inteligencia Artificial, Universidad Tecnológica Nacional Facultad Regional Resistencia, Resistencia, Chaco, Argentina
  • Leonardo S. Wanderer Grupo de Investigación Sobre Inteligencia Artificial, Universidad Tecnológica Nacional Facultad Regional Resistencia, Resistencia, Chaco, Argentina
  • Manuel Gimenez Grupo de Investigación Sobre Inteligencia Artificial, Universidad Tecnológica Nacional Facultad Regional Resistencia, Resistencia, Chaco, Argentina
  • Diana Carpintero Grupo de Investigación Sobre Inteligencia Artificial, Universidad Tecnológica Nacional Facultad Regional Resistencia, Resistencia, Chaco, Argentina

Abstract

Multi-Criteria Decision Analysis (MCDA) is a usual activity among organisations and decisions related to people’s activities. Due to the complexity of considering multiple criteria, to select an alternative is a non-trivial task. From operative levels to managerial ones, MCDA is implemented by using several (formal and informal) techniques. Two useful techniques that help to make a decision are the Analytic Hierarchy Process (AHP) and MCDA models based on Linguistic Information (LI). This work describes a MCDA framework that combines the
mentioned techniques in order to provide more confidence in the decision making process. To test the proposed model, framework was used to select the adequate network configuration to improve quality of service (QoS). Finally, the framework’s outputs were compared to real experts’ opinions obtaining satisfactory results.

Downloads

Download data is not yet available.

References

[1] D. J. Power, R. Braden, D. Clark, S. Shenker, Decision support systems, Springer Handbook of Automation, 2009.
[2] D. Arnott, G. Pervan, Eight Key Issues for the Decision Support Systems Discipline, Decision Support Systems 44 (2008) 657-672.
[3] S. Gao, H. Wang, D. Xu, Y. Wang, An Intelligent Agent-assisted Decision Support System for Family Financial Planning, Decision Support Systems 44 (2007) 60-78.
[4] S. Sadagopan, Enterprise Resource Planning, in: Encyclopedia of Information Systems, (2003), 169-184.
[5] C. W. Holsapple, M. P. Sena, ERP Plans and Decisionsupport Benefits, Decision Support Systems 38 (2005) 575-590.
[6] P. Gray, Group Decision Support Systems, Decision Support Systems (1987) 233-242.
[7] M. A. Nour, D. C. C. Yen, Group Decision Support Systems: Towards a Conceptual Foundation, Information & Management 23 (1992) 55-64.
[8] G. P. Pervan, A Review of Research in Group Support Systems: Leaders, Approaches and Directions, Decision Support Systems 23 (1998) 149-159.
[9] J. Yen, Intelligent Agents and Digital Community, Decision Support Systems. Special Issue of Decision Supports Systems 28 (2000) 217-218.
[10] R. W. Robbins, W. A. Wallace, Decision Support for Ethical Problem Solving: A Multi-agent Approach, Decision Support Systems 43 (2007) 1571-1587.
[11] P. Bharati, A. Chaudhury, An Empirical Investigation of Decision-making Satisfaction in Web-based Decision Support Systems, Decision Support Systems 37 (2004) 187-197.
[12] H. K. Bhargava, D. J. Power, D. Sun, Progress in Web-based Decision Support Technologies, Decision Support Systems 43 (2007) 1083-1095.
[13] D. J. Power, R. Sharda, Model-driven Decision Support Systems: Concepts and Research Directions, Decision Support Systems 43 (2007) 1044-1061.
[14] J. Figueira, S. Greco, M. Ehrgott, Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, Boston, Dordrecht, London, 2005.
[15] J. Figueira, V. Mousseau, B. Roy, ELECTRE methods. In Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, Boston, Dordrecht, London, 2005.
[16] J. P. Brans, B. Mareschal, PROMETHEE methods. In Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, Boston, Dordrecht, London, 2005.
[17] T. L. Saaty, The Analytic Hierarchy Process, Springer-Verlag, New York, 1980.
[18] T. L. Saaty, The Analytic Network Process. Decision Making with the Analytic Network Process, Springer-Verlag, New York, 2006.
[19] L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. Part I, Part II and Part III, Information Sciences (1975) 199-249, 301-357, 43-80.
[20] L. Martínez, D. Ruan, F. Herrera, Computing with Words in Decision support Systems: An overview on Models and Applications, International Journal of Computational Intelligence Systems (IJCIS) 3 (2010) 382-395.
[21] F. Herrera, E Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems under linguistic information, Fuzzy Sets and Systems 115 (2000) 67-82.
[22] F. Herrera, L. Martínez, A Model Based on Linguistic 2-Tuples for Dealing with Multigranular Hierarchical Linguistic Contexts in Multi-Expert Decision-Making, IEEE Transactions on Systems, Man and Cybernetics -Part B: Cybernetics 31 (2001) 227-234.
[23] L. Wanderer, M. Karanik, D. Carpintero, Genetic algorithms applied to inconsistent matrices correction in the analytic hierarchy process (AHP), in: Argentine Symposium on Artificial Intelligence, (Córdoba, Argentina, 2013), 169-180.
[24] R. De Andrés, M. Espinilla, L. Martínez, An extended hierarchical linguistic model for managing integral evaluation, International Journal of Computational Intelligence Systems 3 (2010) 486-500.
[25] S. Gramajo, L. Martínez, A linguistic decision support model for QoS priorities in networking, Knowledge-Based Systems 32 (2012) 65-75.
[26] R. Degani, G. Bortolan, The Problem of Linguistic Approximation in Clinical Decision Making, International Journal of Approximate Reasoning 2 (1988) 143-162.
[27] F. Herrera, L. Martínez, A 2-tuple Fuzzy Linguistic Representation Model for Computing with Words, IEEE Transactions on Fuzzy Systems 8 (2000) 746-752.
[28] F. Herrera, L. Martínez, The 2-tuple Linguistic Computational Model, Adventages of its linguistic description, accuracy and consistency, Int.J. of Uncertainly, Fuzziness and Knowledge-Based Systems 9 (2001) 33-48.
[29] R. R. Yager, J. Kacprzyk, The ordered weighted averaging operators: theory and applications, Kluwer Academic Publishers, Boston, 1997.
[30] R. R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Transaction on Systems, Man, and Cybernetics 18 (1998) 183–190.
[31] D. Filenev, R. R. Yager, On the issue of abtaining OWA operator weights, Fuzzy Set and Systems 94 (1998) 157-169

Downloads

Published

2014-04-01

How to Cite

Karanik, M. J., Gramajo, S. D., Wanderer, L. S., Gimenez, M., & Carpintero, D. (2014). Multi-Criteria Decision Model based on AHP and Linguistic Information. Journal of Computer Science and Technology, 14(01), p. 16–24. Retrieved from https://journal.info.unlp.edu.ar/JCST/article/view/579

Issue

Section

Original Articles