Web Information Retrieval System for Technological Forecasting

Authors

  • Raúl Montiel Universidad Tecnológica Nacional, Facultad Regional Resistencia, Resistencia, Chaco, H3500CHJ, Argentina
  • Luis Lezcano Airaldi Universidad Tecnológica Nacional, Facultad Regional Resistencia, Resistencia, Chaco, H3500CHJ, Argentina
  • Fabián Favret Universidad Gastón Dachary. Posadas, Misiones, 3300, Argentina
  • Karina Eckert Universidad Gastón Dachary. Posadas, Misiones, 3300, Argentina

Keywords:

web mining algorithms, technological forecasting, competitive intelligence, information retrieval

Abstract

Technological Forecasting and Competitive Intelligence are two different disciplines that, used together, provide the organizations with an invaluable analytic tool for the environment and the competing companies’ behavior. This kind of technology can be used for extracting useful information to make strategic decisions. This paper describes a Web mining system which gathers the users’ information requirements through a series of guided questions, constructs various search keys with the answers and uses them to perform a continuous search and analysis process by means of several web search engines and different information retrieval algorithms to score the relevance of the documents obtained. These documents are later presented to the user as an aid in the decision making process. After the description, the system was tested in several scenarios and the obtained results are shown and discussed.

Downloads

Download data is not yet available.

References

[1] M.I. Ramírez, D. Escobar Rua, B. Arango Alzate, Vigilancia Tecnológica e Inteligencia Competitiva, Gestión de Las Personas Y Tecnología. 13 (2012) 238–249.
[2] B. Arango Alzate, L. Tamayo Giraldo, A. Fadul Barbosa, Vigilancia Tecnológica: Metodologías y Aplicaciones, Gestión de Las Personas Y Tecnología. (2012) 154–161.
[3] S. Madnick, W. Woon, A. Henschel, A. Firat, Technology Forecasting using Data Mining and Semantics, Cambridge, MA, 2008.
[4] J.P. Shim, M. Warkentin, J.F. Courtney, D.J. Power, R. Sharda, C. Carlsson, Past, Present, and Future of DecisionSupport Technology, Decision Support Systems. 33 (2002) 111–126. doi:10.1016/S0167-9236(01)00139-7.
[5] D.J. Power, R. Sharda, Decision Support Systems, in: Springer Handbook of Automation, 2009: pp. 1539–1548. doi:10.1007/978-3-540-78831-7_87.
[6] C.W. Holsapple, Decision Support Systems, in:Encyclopedia of Information Systems, International Thomson Business Press, New York, 2003: pp. 551–565.
[7] B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 2011. doi:10.1007/978-3-642-19460-3.
[8] F. Johnson, S. Kumar Gupta, Web Content Mining Techniques: A Survey, International Journal of Computer Applications. 47 (2012) 44–50. doi:10.5120/7236-0266.
[9] R. Barainka, Modelos de Vigilancia e Inteligencia Competitiva, BAI Agencia de Innovacion, 2006.
[10] J.M. Durán, M.M. Martínez, J.V. Triano, La Vigilancia Tecnológica en la Gestión de Proyectos de I+D+i: Recursos y Herramientas, El Profesional de La Informacion. 15 (2006) 411–419.
[11] J.C. Vergara, La Vigilancia Tecnológica antes y después de la UNE166006 : 2006 Ex, PUZZLE: Revista Hispana de La Inteligencia Competitiva. 5 (2006) 37–41.
[12] A.K. Firat, W.L. Woon, S. Madnick, Technological forecasting–A review, Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology. (2008).
[13] V. Coates, M. Farooque, R. Klavans, K. Lapid, H.A. Linstone, C. Pistorius, et al., On the Future of Technological Forecasting, Technological Forecasting and Social Change. 67 (2001) 1–17. doi:10.1016/S0040-1625(00)00122-0.
[14] T.J. Gordon, J.C. Glenn, Futures research methodology, The Millennium Project, 2003.
[15] F.J. Parent, J.K. Anderson, P. Myers, T. O’brien, An examination of factors contributing to delphi accuracy, Journal of Forecasting. 3 (1984) 173–182.
[16] R.R. Levary, D. Han, Choosing a Technological Forecasting Method, Industrial Management. 37 (1995) 14–-18.
[17] T.J. Gordon, A simple Agent Model of an Epidemic, Technological Forecasting and Social Change. 70 (2003) 397–417. doi:10.1016/S0040-1625(02)00323-2.
[18] P. Escorsa, P. Lázaro, Intec. La Inteligencia Competitiva. Factor Clave para la Toma de Decisiones Estratégicas en las Organizaciones., Comunidad de Madrid Consejería de Educación Dirección General de Universidades e Investigación Fundación madri+d para el Conocimiento, 2007.
[19] P.T. Gibbons, J.E. Prescott, Parallel Competitive Intelligence Processes in Organisations, International Journal of Technology Management. 11 (1996) 162–178.
[20] R.G. Vedder, M.T. Vanecek, C.S. Guynes, J.J. Cappel, CEO and CIO perspectives on competitive intelligence, Communications of the ACM. 42 (1999) 108–116. doi:10.1145/310930.310982.
[21] T. Hiltbrand, Learning Competitive Intelligence From a Bunch of Screwballs, Business Intelligence Journal. 15 (2010).
[22] I. Anica-Popa, G. Cucui, A Framework for Enhancing Competitive Intelligence Capabilities using Decision Support System based on Web Mining Techniques, International Journal of Computers, Communication & Control. 4 (2009) 326–334.
[23] A. Hidalgo Nuchera, G. León Serrano, J. Pavón Morote, La Gestión de la Innovación y la Tecnología en las Organizaciones, Ediciones Pirámide, 2002.
[24] V.H.E. Jeria, Minerıa Web de Uso y Perfiles de Usuario: Aplicaciones con Lógica Difusa, 2007. decsai.ugr.es/Documentos/tesis_dpto/100.pdf.
[25] L. Lezcano Airaldi, F. Sa, M. Karanik, L. Wanderer, Modelo de Recopilación de Requerimientos para Vigilancia Tecnológica e Inteligencia Competitiva (VTeIC), in: 3er Congreso Nacional de Ingeniería Informática Y Sistemas de Información (CONAIISI), 2015.
[26] OwnCloud, OwnCloud self-hosted file sync and share server, (n.d.) www.owncloud.org.
[27] S.S. Bama, M.S.I. Ahmed, A. Saravanan, Enhancing the Search Engine Results through Web Content Ranking, International Journal of Applied Engineering Research. 10 (2015) 13625–13635.
[28] D.-J. Kim, S.-C. Lee, H.-Y. Son, S.-W. Kim, J.B. Lee, C-Rank and its variants: A contribution- based ranking approach exploiting links and content, Journal of Information Science. 40 (2014) 761–778. doi:10.1177/0165551514545429.
[29] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology behind Search, Information Retrieval. 82 (2011) 944. doi:10.1080/14735789709366603.
[30] R. Nuray, F. Can, Automatic ranking of information retrieval systems using data fusion, Inf. Process. Manag. 42 (2006) 595–614. doi:10.1016/j.ipm.2005.03.023.

Downloads

Published

2017-04-01

How to Cite

Montiel, R., Lezcano Airaldi, L., Favret, F., & Eckert, K. (2017). Web Information Retrieval System for Technological Forecasting. Journal of Computer Science and Technology, 17(01), p. 49–58. Retrieved from https://journal.info.unlp.edu.ar/JCST/article/view/451

Issue

Section

Original Articles