Copyright and Licensing
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory condition characterized by inflammation and narrowing of the airways, leading to symptoms such as shortness of breath, coughing, and chest tightness. Treatment typically involves lifestyle adjustments, medication, and pulmonary rehabilitation to improve lung function and quality of life. This study presents a model examining COPD patient behavior within cohort-based strategies, focusing on how environmental factors impact vital signs across the entire cohort. We developed a comprehensive virtual clinical trial model that encompasses study protocol design, participant recruitment, virtual data collection, outcome analysis, and conclusions. This includes remote symptom monitoring, virtual healthcare consultations, treatment adherence assessments, and research data collection. Additionally, we explore the influence of external variables such as environmental conditions, comorbidities, and lifestyle factors on chronic disease symptoms and disease stability. We used an Agent-Based Model(ABM) to incorporate these factors to assess COPD progression and treatment efficacy. Individual agents represent COPD patients, each characterized by attributes such as age, smoking history, lung function, comorbidities, and treatment plans.
Soriano, J. B., Alfageme, I., Miravitlles, M., de Lucas, P., Soler-Cataluña, J. J., García- Río, F., Casanova, C., Gonzalez-Moro, J. M. R., Cosío, B. G., Sánchez, G., et al. (2021). Prevalence and determinants of COPD in Spain: EPI-SCAN II. Archivos de Bronconeumología, 57(1), 61–69. DOI: 10.3390/jcm11092670
P. M. Clemente, M. Pascual-Carrasco, C. M. Hernández, R. M. de Molina, L. Arvelo, B. Cadavid,F. López, R. Sánchez-Madariaga, A. Sam, A. T. Alonso, et al., “Follow-up with telemedicine in early discharge for copd exacerbations: randomized clinical trial(telemedcopd-trial),”2021. DOI: 10.1080/15412555.2020.1857717
G. Donaldson, T. A. Seemungal, A. Bhowmik, andJ. Wedzicha, “Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease,” Thorax, vol. 57, no. 10,pp.847– 852,2002. DOI: 10.1136/thorax.57.10.847
R. S. Aguilar-Savén, “Business process modelling: Review and framework,” International Journal of production economics, vol. 90, no. 2, pp. 129–149, 2004.https://doi.org/10.1016/S09255273(03)0 0102-6
T. A. Seemungal, G. C. Donaldson, A. Bhowmik, D. J. Jeffries, and J. A. Wedzicha, “Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease,” American journal of respiratory and critical care medicine, vol. 161,no.5,pp.1608– 1613,2000. DOI: 10.1164/ajrccm.161.5.9908022
C. M. Macal and M. J. North, “Tutorial on agent- based modeling and simulation,” in Proceedings of the Winter Simulation Conference, 2005., pp. 14–pp, IEEE,2005. DOI: 10.1109/WSC.2005.1574234
R. Pauwels, P. Calverley, A. Buist, S. Rennard, Y. Fukuchi, E. Stahl, and C. Löfdahl, “Copd exacerbations: the importance of a standard definition,” Respiratory medicine, vol. 98, no. 2, pp. 99–107,2004. DOI: 10.1016/j.rmed.2003.09.001
C. M. Macal and M. J. North, “Toward teaching agent-based simulation,” in Proceedings of the 2010 winter simulation conference, pp. 268–277, IEEE, 2010. DOI: 10.1109/WSC.2010.5679158
M. H. Asghar, A. Wong, F. Epelde, M. Taboada,D. I. R. del Rosario, and E. Luque, “A virtual clinical trial for evaluation of intelligent monitoring of exacerbation level for copd patients,” in International Conference on Computational Science, pp. 137–144, Springer,2024. https://doi.org/10.1007/978-3031-63759-9_17
J. Sunyer, “Urban air pollution and chronic obstructive pulmonary disease: a review,” European Respiratory Journal, vol. 17, no. 5, pp. 1024–1033, 2001. DOI: 10.1183/09031936.01.17510240
P. Barnes and B. Celli, “Systemic manifestations and comorbidities of copd,” European respiratory journal, vol. 33, no. 5, pp. 1165–1185, 2009. DOI: 10.1183/09031936.00128008
B. Waschki, A. M. Kirsten, O. Holz, K.-C. Mueller, M. Schaper, A.-L. Sack, T. Meyer, K. F. Rabe, H. Magnussen, and H. Watz, “Disease progression and changes in physical activity in patients with chronic obstructive pulmonary disease,” American journal of respiratory and critical care medicine, vol. 192, no. 3, pp. 295–306, 2015. DOI: 10.1164/rccm.201501-0081OC
R. KF, “Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. gold executive summary,” in Respir Crit Care Med, vol. 176, pp. 532–555, 2007. DOI: 10.1164/rccm.200703-456SO
J. L. López-Campos, W. Tan, and J. B. Soriano, “Global burden of copd,” Respirology, vol. 21, no. 1, pp.14–23,2016. DOI: 10.1111/resp.12660
S. S. Salvi and P. J. Barnes, “Chronic obstructive pulmonary disease in non- smokers,” The lancet, vol. 374,no.9691,pp.733–743,2009. DOI: 10.1016/S0140-6736(09)61303-9
D. Lopez, K. Shibuya, C. Rao, C. Mathers, A. Hansell, L. Held, V. Schmid, and S. Buist, “Chronic obstructive pulmonary disease: current burden and future projections,” European Respiratory Journal, vol.27,no.2,pp.397–412,2006. DOI: 10.1183/09031936.06.00025805
H. Müllerova, A. Agusti, S. Erqou, and D. W. Mapel, “Cardio- vascular comorbidity in copd: systematic literature review,” Chest, vol. 144, no. 4,pp. 1163–1178, 2013. DOI: 10.1378/chest.12-2847
Y. Li, H. Jiang, and Z. Lyu, “Virtual reality as an adjunct to pulmonary rehabilitation of patients with chronic obstructive pulmonary disease: a protocol for systematic review and meta- analysis,” BMJ open, vol. 13, no. 12, p. e074688, 2023. DOI:10.1136/bmjopen-2023- 074688
J. M. Epstein, “Agent-based computational models and generative social science,” Complexity, vol. 4, no. 5, pp. 41–60, 1999.
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO;2-F
C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simulation,” in Proceedings of the Winter Simulation Conference, 2005., pp. 14–pp, IEEE, 2005. DOI:10.1109/WSC.2005.1574234
J. Milner, S. Vardoulakis, Z. Chalabi, and P. Wilkinson, “Modelling inhalation exposure to combustion-related air pollutants in residential buildings: Application to health impact assessment,” Environment International, vol. 37, no. 1, pp. 268–279, 2011. https://doi.org/10.1016/j.envint.2010.08.015
Y. Li, M. A. Lawley, D. S. Siscovick, D. Zhang, and J. A.Pagán, “Peer reviewed: agent-based modeling of chronic diseases: a narrative review and future research directions,” Preventing chronic disease, vol. 13, 2016. DOI: 10.5888/pcd13.150561
L. Andrews, K. Kostelecky, S. Spritz, and A. M. Franco, “Virtual clinical trials: one step forward, two steps back,” J. Health Care L. & Pol’y, vol. 19, p. 189, 2016. Available at https://digitalcommons.law.umaryland.edu/jhcl p/vol19/iss2/2/
E. Aspland, D. Gartner, and P. Harper, “Clinical pathway modelling: a literature review,” Health Systems, vol. 10, no. 1, pp. 1– 23,2021. doi: 10.1080/20476965.2019.16525 47
S. Aryal, E. Diaz-Guzman, and D. M. Mannino,“Copd and gender differences: an update,” Translational Research, vol. 162, no. 4, pp. 208–218,2013. https://doi.org/10.1016/j.trsl.2013.04.003
J. Ross, F. Stevenson, R. Lau, and E. Murray, “Factors that influence the implementation of e-health: a systematic review of systematic reviews (an update),” Implementation science, vol. 11, pp. 1–12, 2016.https://doi.org/10.1186/s13012-016- 0510-7
M. Hallaj Asghar, A. Vicente-Villalba, A. Wong,D. Rexachs del Rosario, and E. Luque Fadón, “Modelling and simulation of the copd patient and clinical staff in the emergency department (ed),” in IX Jornadas de Cloud Computing, Big Data & Emerging Topics (Modalidad virtual, 22 al 25 de junio de 2021), 2021. https://doi.org/10.35537/10915/121564
C. M. Macal and M. J. North, “Tutorial on agent- based modeling and simulation,” in Proceedings of the Winter Simulation Conference, 2005., pp. 14–pp, IEEE, 2005. DOI:10.1109/WSC.2005.1574234
M. Vitacca, “Teleassistance in chronic respiratory failure patients,” Applied Technologies in Pulmonary Medicine, p. 119, 2011.DOI:https://doi.org/10.1159/00032276 3
Copyright (c) 2024 Mohsen Hallaj Asghar, Alvaro Wong, Francisco Epelde, Manel Taboada, Dolores Rexachs, Emilio Luque
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
Review Stats:
Mean Time to First Response: 89 days
Mean Time to Acceptance Response: 114 days
Member of:
ISSN
1666-6038 (Online)
1666-6046 (Print)