Copyright and Licensing
Articles accepted for publication will be licensed under the Creative Commons BY-NC. Authors must sign a non-exclusive distribution agreement after article acceptance.
This article describes an information retrieval system with entity query expansion by relevance feedback.
The performance of the system is tested assuming its usage as a support tool for lawyers constructing a legal
framework for a case. The objective is to improve the precision of results when searching for relevant
jurisprudence. For this, the entities belonging to a knowledge base are used as a means to expand the
query. The expansion can be done using either an automatic or an interactive mechanism. This second
approach suggests to the user concepts related to the query, which might improve the search experience. An
ontology and a knowledge base, called LegalOnto and LegalBase, respectively, were developed. The ontology includes concepts not addressed by existing legal ontologies, and the knowledge base integrates LegalOnto with the thesaurus of the Argentine System of Legal Information (Sistema Argentino de Informacion ´
Jur´ıdica: SAIJ), enriched in the subject of traffic accidents. Quantitative experimentation is carried out upon a
set of court documents that are used to populate the knowledge base. Preliminary results are encouraging.
L. Perezzini, A. Casali, and C. Deco, “Sistema de soporte para la recuperaci´on de normativas en la ingenier´ıa legal,” in SID 2020 - 49 JAIIO, 2020.
G. A. Dehner, K. B. Eckert, J. M. Lezcano, and H. J. Ruid´ıas, “Modelo de recuperaci´on de informaci´on jur´ıdica basado en ontolog´ıas y distancias sem´anticas,” in XIX Simposio Argentino de Inform´atica y Derecho (SID 2019)-JAIIO 48 (Salta), 2019.
F. Cardellino, C. Cardellino, K. Haag, A. Soto, M. Teruel, L. Alonso i Alemany, and S. Villata, “Mejora del acceso a infoleg mediante t´ecnicas de procesamiento autom´atico del lenguaje,” in XVIII SID-47 JAIIO, 2018.
J. Catacora, A. Casali, and C. Deco, “Sistema de recuperaci´on de informaci´on con expansi´on de la consulta basada en entidades,” in XXVII Congreso Argentino de Ciencias de la Computaci´on (CACIC)(Modalidad virtual, 4 al 8 de octubre de 2021), 2021.
J. M. Ponte and W. B. Croft, “A language modeling approach to information retrieval,” in Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’98, (New York, NY, USA), p. 275–281, Association for Computing Machinery, 1998.
C. Zhai and J. Lafferty, “A study of smoothing methods for language models applied to ad hoc information retrieval,” in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’01, (New York, NY, USA), p. 334–342, Association for Computing Machinery, 2001.
P. Ogilvie and J. Callan, “Experiments using the lemur toolkit,” in TREC, vol. 1, pp. 103–108, 2001.
J. Kim, X. Xue, and W. B. Croft, “A probabilistic retrieval model for semistructured data,” in Advances in Information Retrieval (M. Boughanem, C. Berrut, J. Mothe, and C. Soule-Dupuy, eds.), pp. 228–239, Springer Berlin Heidelberg, 2009.
V. Lavrenko and W. B. Croft, “Relevance based language models,” in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, (New York, NY, USA), p. 120–127, 2001.
Y. Lv and C. Zhai, “A comparative study of methods for estimating query language models with pseudo feedback,” in Proceedings of the 18th ACM conference on Information and knowledge management, pp. 1895–1898, 2009.
R. Reinanda, E. Meij, M. de Rijke, et al., “Knowledge graphs: An information retrieval perspective,” Foundations and Trends in Information Retrieval, vol. 14, no. 4, 2020.
K. Balog, Entity-Oriented Search, vol. 39 of The Information Retrieval Series. Springer, 2018.
E. Meij, D. Trieschnigg, M. de Rijke, and W. Kraaij, “Conceptual language models for domain-specific retrieval,” Inf. Processing & Management, vol. 46, no. 4, pp. 448–469, 2010.
V. R. Doncel and E. M. Ponsoda, “Lynx: Towards a legal knowledge graph for multilingual europe,” Law in Context. A Socio-legal Journal, vol. 37, no. 1, pp. 1–4, 2020.
A. Oksanen, J. Tuominen, E. M¨akel¨a, M. Tamper, A. Hietanen, and E. Hyv¨onen, “Semantic finlex: Transforming, publishing, and using finnish legislation and case law as linked open data on the web,” Knowledge of the Law in the Big Data Age, vol. 317, pp. 212–228, 2019.
I. Chalkidis, C. Nikolaou, P. Soursos, and M. Koubarakis, “Modeling and querying greek legislation using semantic web technologies,” in European Semantic Web Conference, pp. 591–606, Springer, 2017.
S. G. D. Clarke, “The information retrieval thesaurus,” KO KNOWLEDGE ORGANIZATION, vol. 46, no. 6, pp. 439–459, 2019.
“ISO 25964-1:2011: information and documentation - Thesauri and interoperability with other vocabularies. Part 1, Thesauri for information retrieval,” standard, International Organization for Standardization, 2011.
A. Miles and S. Bechhofer, “SKOS simple knowledge organization system reference,” W3C recommendation, W3C, Aug. 2009. http://www.w3.org/TR/2009/RECskos-reference-20090818/.
D. Allemang, J. Hendler, and F. Gandon, Semantic Web for the Working Ontologist: Effective Modeling for Linked Data, RDFS, and OWL. New York, NY, USA: Association for Computing Machinery, 3 ed., 2020.
K. Balog, M. Bron, and M. De Rijke, “Query modeling for entity search based on terms, categories, and examples,” ACM Trans. Inf. Syst., vol. 29, pp. 22:1–22:31, Dec. 2011.
K. Bi, Q. Ai, and W. B. Croft, “Revisiting iterative relevance feedback for document and passage retrieval,” arXiv preprint arXiv:1812.05731, 2018.
J. Lin, R. Nogueira, and A. Yates, “Pretrained transformers for text ranking: Bert and beyond,” arXiv preprint arXiv:2010.06467, 2020.
K. Balog, M. Bron, and M. De Rijke, “Query modeling for entity search based on terms, categories, and examples,” ACM Transactions on Information Systems (TOIS), vol. 29, no. 4, pp. 1–31, 2011.
Copyright (c) 2022 Joel Arnaldo Gimenez Catacora, Ana Casali, Claudia Deco
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Articles accepted for publication will be licensed under the Creative Commons BY-NC. Authors must sign a non-exclusive distribution agreement after article acceptance.
ISSN
1666-6038 (Online)
1666-6046 (Print)
Member of: