VISUEL - A Web Dynamic Dashboard for DataVisualization

Authors

DOI:

https://doi.org/10.24215/16666038.22.e03

Keywords:

Data Visualization, Visual Analysis, Visualization Dashboard, Visualization Tool

Abstract

Data visualization aims to explore and analyze data quickly, interactively, and intuitively using visual representations. Faced with the constant growth of data in terms of volume and diversity, visualization techniques must confront the challenge of dealing with increasingly large datasets in terms of representation, interaction, and performance. Therefore, these techniques must be able to effectively convey the characteristics of the information space and inspire discovery.
In this article, we present VISUEL, a web dynamic dashboard for data visualization. VISUEL supports multiple coordinated views, integrating visualization techniques such as scatter plots, parallel coordinates, and box plots, and interactive schematic maps to represent information enriched with spatial references.
VISUEL is fully interactive, supporting traditional interactions like filtering, selection, brushing and linking, and zooming, among others. It also allows the user to configure the visual representation of their data, by selecting the color and shape of the representations.
We illustrate the usefulness of this tool using real-life data related to the wine industry in Argentina. Important aspects of our case study are discovered through the construction and analysis of multiple views.

Downloads

Download data is not yet available.

References

S. T. Card, J. D. Mackinlay, and B. Scheiderman, Readings in Information Visualization, using vision to think. San Francisco: Morgan Kaufmann, 1999.

M. Scherr, “Multiple and coordinated views in information visualization,” Trends in information visualization, vol. 38, pp. 1–33, 2008.

S. Wozny, “Web based data visualization solutions in quality assurance.” Available at: https://eestec.net/media/it-team/wozny15.pdf, september 2015. FORSCHUNGSPRAXIS.

F. Mwalongo, M. Krone, G. Reina, and T. Ertl, “Stateof-the-art report in web-based visualization,” Computer graphics forum, vol. 35, no. 3, pp. 553–575, 2016.

P. Pop, “Comparing web applications with desktop applications: An empirical study,” Link¨oping University, Link¨oping, 2002.

T. Munzner, Visualization analysis and design. CRC press, 2014.

C. Tominski and H. Schumann, Interactive Visual Data Analysis. CRC Press, 2020.

S. Few, Information dashboard design: The effective visual communication of data, vol. 2. O’Reilly Sebastopol, CA, 2006.

S. Wexler, J. Shaffer, and A. Cotgreave, The big book of dashboards: visualizing your data using real-world business scenarios. John Wiley & Sons, 2017.

M. Lawrence, E.-K. Lee, D. Cook, H. Hofmann, and E. Wurtele, “explorase: Exploratory data analysis of systems biology data,” in Fourth International Conference on Coordinated & Multiple Views in Exploratory Visualization (CMV’06), pp. 14–20, IEEE, 2006.

M. Rautenhaus, M. B¨ottinger, S. Siemen, R. Hoffman, R. M. Kirby, M. Mirzargar, N. R¨ober, and R. Westermann, “Visualization in meteorology—a survey of techniques and tools for data analysis tasks,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 12, pp. 3268–3296, 2018.

M. L. Ganuza, S. M. Castro, G. Ferracutti, E. A. Bjerg, and S. R. Martig, “Spinelviz: An interactive 3d application for visualizing spinel group minerals,” Computers & Geosciences, vol. 48, no. 0, pp. 50–56, 2012.

M. L. Ganuza, G. Ferracutti, M. F. Gargiulo, S. M. Castro, E. Bjerg, E. Gr¨oller, and K. Matkovi´c, “The spinel explorer—interactive visual analysis of spinel group minerals,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1913–1922, 2014.

A. S. Antonini, M. L. Ganuza, G. Ferracutti, M. F. Gargiulo, K. Matkovi´c, E. Gr¨oller, E. A. Bjerg, and S. M. Castro, “Spinel web: an interactive web application for visualizing the chemical composition of spinel group minerals,” Earth Science Informatics, vol. 14, no. 1, pp. 521–528, 2021.

“Business dashboards: Data at a glance.” Available at: https://www.tableau.com/solutions/topic/business-dashboards/. Accessed on 2021-03-25.

“Zoho reviews — technologyadvice.” Available at: http://technologyadvice.com/products/zoho-reviews/. Accessed on 2021-03-25.

“Google analytics.” Available at: https://analytics.google.com/analytics/web/. Accessed on 2021-04-12.

C. North and B. Shneiderman, “Snap-together visualization: A user interface for coordinating visualizations via relational schemata (2000),” tech. rep., HCIL, Inst.for Systems Research, Dpt. of Computer Science, University of Maryland, 2005.

“Sas visual analytics — sas.” Available at: https://www.sas.com/en_us/software/visual-analytics.html/. Accessed on 2021-03-25.

“Microsoft power bi.” Available at: https://powerbi.microsoft.com/. Accessed on 2021-04-16.

“Sisense reviews — technologyadvice.” Available at: http://technologyadvice.com/products/sisense-review/. Accessed on 2021-03-25.

F. Anderson, “Getting started tutorial for ibm watson analytics,” IBM Corp, New York, 2012.

“Qlik view.” Available at: https://www.qlik.com/us/. Accessed on 2021-04-16.

“Scimago graphica.” Available at: http://graphica.app/. Accessed on 2021-09-16.

“Chartblocks.” Available at: http://www.chartblocks.com/en/. Accessed on 2021-04-19.

“Infogram.” Available at: https://infogr.am/. Accessed on 2021-04-19.

C. North and B. Shneiderman, “Snap-together visualization: Coordinating multiple views to explore information,” tech. rep., HCIL, Inst.for Systems Research, Dpt. of Computer Science, University of Maryland, 1999.

C. North and B. Shneiderman, “Snap-together visualization: can users construct and operate coordinated visualizations?,” International Journal of Human- Computer Studies, vol. 53, no. 5, pp. 715–739, 2000.

C. Ahlberg, “Spotfire: an information exploration environment,” ACM SIGMOD Record, vol. 25, no. 4, pp. 25–29, 1996.

K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual analysis with partial view specifications,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 2648–2659, 2017.

R. High, “The era of cognitive systems: An inside look at ibm watson and how it works,” IBM Corporation, Redbooks, vol. 1, p. 16, 2012.

R. L. Sallam, J. Tapadinhas, J. Parenteau, D. Yuen, and B. Hostmann, “Magic quadrant for business intelligence and analytics platforms,” Gartner RAS core research notes. Gartner, Stamford, CT, 2014.

Z. Cui, S. K. Badam, M. A. Yalc¸in, and N. Elmqvist, “Datasite: Proactive visual data exploration with computation of insight-based recommendations,” Information Visualization, vol. 18, no. 2, pp. 251–267, 2019.

T. Kraska, “Northstar: An interactive data science system,”Proceedings of the VLDB Endowment, vol. 11, no. 12, pp. 2150–2164, 2018.

C¸ . Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati, “Foresight: Rapid data exploration through guideposts,” arXiv preprint arXiv:1709.10513, 2017.

M. A. Yalc¸ın, N. Elmqvist, and B. B. Bederson, “Keshif: Rapid and expressive tabular data exploration for novices,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 8, pp. 2339–2352, 2017.

A. Srinivasan, S. M. Drucker, A. Endert, and J. Stasko, “Augmenting visualizations with interactive data facts to facilitate interpretation and communication,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 672–681, 2018.

M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska, “Vistrees: fast indexes for interactive data exploration,” in Proceedings of theWorkshop on Human-In-the-Loop Data Analytics, pp. 1–6, 2016.

B. Yu and C. T. Silva, “Visflow-web-based visualization framework for tabular data with a subset flow model,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 251–260, 2016.

P. Koytek, C. Perin, J. Vermeulen, E. Andr´e, and S. Carpendale, “Mybrush: Brushing and linking with personal agency,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 605–615, 2017.

E. Zgraggen, R. Zeleznik, and S. M. Drucker, “Panoramicdata: Data analysis through pen & touch,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2112–2121, 2014.

D. Ren, T. H¨ollerer, and X. Yuan, “ivisdesigner: Expressive interactive design of information visualizations,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2092–2101, 2014.

W. S. Cleveland and R. McGill, “The many faces of a scatterplot,” Journal of the American Statistical Association, vol. 79, no. 388, pp. 807–822, 1984.

R. A. Becker and W. S. Cleveland, “Brushing scatterplots,” Technometrics, vol. 29, no. 2, pp. 127–142, 1987.

D. I. Benn and C. K. Ballantyne, “The description and representation of particle shape,” Earth Surface Processes and Landforms, vol. 18, no. 7, pp. 665–672, 1993.

G. B. Sidder, “Petro. calc. plot, microsoft excel macros to aid petrologic interpretation,” Computers & Geosciences, vol. 20, no. 6, pp. 1041–1061, 1994.

M. L. Ganuza, G. Ferracutti, F. Gargiulo, S. Castro, E. A. Bjerg, E. Gr¨oller, and K. Matkovi´c, “Interactive visual categorization of spinel-group minerals,” in Proceedings of the 33rd Spring Conference on Computer Graphics, pp. 1–11, 2017.

D. Gozdowski, D. Sas, J. Rozbicki,W. Madry, J. Golba, M. Piechocinski, L. Kurzynska, M. Studnicki, and A. Derejko, “Visualizing diversity of yield determination by its components for winter wheat cultivar with ternary plot,” in Colloquium Biometricum, vol. 41, -, 2011.

M. Kozak et al., “Visualizing adaptation of genotypes with a ternary plot,” Chil. J. Agric. Res, vol. 70, no. 4, pp. 596–603, 2010.

J. W. Tukey et al., Exploratory data analysis, vol. 2. Reading, Mass., 1977.

A. Inselberg and B. Dimsdale, “Parallel coordinates: a tool for visualizing multi-dimensional geometry,” in Proceedings of the First IEEE Conference on Visualization: Visualization90, pp. 361–378, IEEE, 1990.

A. Inselberg, “A survey of parallel coordinates,” in Mathematical Visualization, pp. 167–179, Springer, 1998.

B. Kovalerchuk, “Visualization of multidimensional data with collocated paired coordinates and general line coordinates,” in Visualization and Data Analysis 2014, vol. 9017, p. 90170I, International Society for Optics and Photonics, 2014.

B. Kovalerchuk, Visual knowledge discovery and machine learning, vol. 144. Springer, 2018.

B. Kovalerchuk and V. Grishin, “Adjustable general line coordinates for visual knowledge discovery in nd data,” Information Visualization, vol. 18, no. 1, pp. 3–32, 2019.

Downloads

Published

2022-04-21

How to Cite

Antonini, A. S., Ganuza, M. L., & Castro, S. M. (2022). VISUEL - A Web Dynamic Dashboard for DataVisualization. Journal of Computer Science and Technology, 22(1), e03. https://doi.org/10.24215/16666038.22.e03

Issue

Section

Original Articles

Most read articles by the same author(s)