Improving Open Science Using Linked Open Data: CONICET Digital Use Case

Authors

  • Marcos daniel zarate Centre for the Study of Marine Systems, Patagonian National Research Centre (CENPAT-CONICET), Argentina
  • Carlos Buckle Departamento de Informática, Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, Argentina
  • Renato Mazzanti Laboratorio de Investigación en Informática (LINVI), Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, Argentina
  • Gustavo Samec Laboratorio de Investigación en Informática (LINVI), Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, Argentina

DOI:

https://doi.org/10.24215/16666038.19.e05

Keywords:

CONICET Digital, Linked Open Data, Open Science, RDF, SPARQL

Abstract

Scientific publication services are changing drastically, researchers demand intelligent search services to discover and relate scientific publications. Publishers
need to incorporate semantic information to better organize their digital assets and make publications more discoverable. In this paper, we present the on-going work to publish a subset of scientific publications of CONICET Digital as Linked Open Data. The objective of this work is to improve the recovery and
reuse of data through Semantic Web technologies and Linked Data in the domain of scientific publications.
To achieve these goals, Semantic Web standards and reference RDF schema’s have been taken into account (Dublin Core, FOAF, VoID, etc.). The conversion and publication process is guided by the methodological guidelines for publishing government linked data. We also outline how these data can be linked to other datasets DBLP, WIKIDATA and DBPEDIA on the web of data. Finally, we show some examples of queries that answer questions that initially CONICET Digital does not allow

Downloads

Download data is not yet available.

Downloads

Published

2019-04-17

How to Cite

zarate, M. daniel, Buckle, C., Mazzanti, R., & Samec, G. (2019). Improving Open Science Using Linked Open Data: CONICET Digital Use Case. Journal of Computer Science and Technology, 19(01), e05. https://doi.org/10.24215/16666038.19.e05

Issue

Section

Original Articles

Most read articles by the same author(s)