Parallel recognition and classification of objects

Authors

  • Rodrigo Felice Department of Computer Sciences, Faculty of Exact Sciences, Universidad Nacional de La Plata, Argentina
  • Fernando Ruscitti Department of Computer Sciences, Faculty of Exact Sciences, Universidad Nacional de La Plata, Argentina
  • Marcelo Naiouf III-LIDI (Institute of Research in Computer Sciences LIDI), Facultad de Informática. Universidad Nacional de La Plata. La Plata, 1900, Argentina.
  • Armando Eduardo De Giusti III-LIDI (Institute of Research in Computer Sciences LIDI), Facultad de Informática. Universidad Nacional de La Plata. La Plata, 1900, Argentina.

Abstract

The development of parallel algorithms for an automatic recognition and classification of objects from an industrial line (either production or packaging) is presented. This kind of problem introduces a temporal restriction on images processing, a parallel resolution being therefore required. We have chosen simple objects (fruits, eggs, etc.), which are classified according to characteristics such as shape, color, size, defects (stains, loss of color), etc. By means of this classification, objects can be sent, for example, to different sectors of the line. Algorithms parallelization on a heterogeneous computers network with a PVM (Parallel Virtual Machine) support is studied in this paper. Finally, some quantitative results obtained from the application of the algorithm on a representative sample of real images are presented.

Downloads

Download data is not yet available.

References

[1] G. A. Baxes, "Digital Image Processing. Principles and Applications", John Wiley & Sons Inc., 1994.
[2] M. Coffin, "Parallel programming- A new approach", Prentice Hall, Englewood Cliffs, 1992.
[3] "OCCAM", Computer System Architects, 1990.
[4] R. C. González, R. E. Woods, "Digital Image Processing", Addison-Wesley Publishing Comp., 1992.
[5] R. M. Haralick, L. G. Shapiro, “Computer and Robot Vision”, Addison-Wesley Publishing Company, 1992.
[6] D. W. Heermann, A. N. Burkitt, "Parallel Algorithms in Computational Science", Springer-Verlag, 1991.
[7] C. A. R. Hoare, "Communicating Sequential Processes", Prentice-Hall, 1985.
[8] Z. Hussain, "Digital Image Processing", Ellis Horwood Limited, 1991.
[9] K. Hwang, "Advanced Computer Architecture. Parallelism, Scalability, Programmability", McGraw Hill, 1993.
[10] A. Jain, "Fundamentals of Digital Image Processing", Prentice Hall Inc., 1989.
[11] R. Jain, R. Kasturi, B. G. Schunck, “Machine Vision”, McGraw-Hill International Editions, 1995.
[12] H. Lawson, "Parallel processing in industrial real time applications", Prentice Hall 1992.
[13] F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes”, Morgan Kaufmann Publishers, 1992.
[14] S. Levi, A. Agrawala, "Real Time System Design", McGraw-Hill Inc, 1990.
[15] H. S. Morse, “Practical Parallel Computing”, AP Professional, 1994.
[16] ¨Parallel Virtual Machine¨, World Wide Web.
[17] J. Rumbaugh, M. Blaha, M. Premerlani, W. Lorensen, “Object-Oriented Modeling and Design”, Prentice Hall, Englewoods Cliff, 1991.
[18] R. Schalkoff, “Pattern Recognition. Statistical, Structural and Neural Approaches”, 1992.
[19] A. Umar, “Distributed Computing and Client-Server Systems”, P T R Prentice Hall, 1993

Downloads

Published

1999-03-01

How to Cite

Felice, R., Ruscitti, F., Naiouf, M., & De Giusti, A. E. (1999). Parallel recognition and classification of objects. Journal of Computer Science and Technology, 1(01), 17 p. Retrieved from https://journal.info.unlp.edu.ar/JCST/article/view/1029

Issue

Section

Original Articles

Most read articles by the same author(s)

1 2 3 4 > >>