Copyright and Licensing
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
This paper presents an Ant Colony Optimisation (ACO) model for the Multiple Knapsack Problem (MKP). The ACO algorithms, as well as other evolutionary metaphors, are being applied successfully to diverse heavily constrained problems: Travelling Salesman Problem, Quadratic Assignment Problem and Bin Packing Problem. An Ant System, the first ACO algorithm that we presented in this paper, is also considered a class of multiagent distributed algorithm for combinatorial optimisation. The principle of an ACO Algorithm is adapted to the MKP. We present some results regardin its perfomance against known optimun for different instances of MKP. The obtained results show the potential power of this particular evolutionary approach for optimisation problems.
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
You may also start an advanced similarity search for this article.
Review Stats:
Mean Time to First Response: 89 days
Mean Time to Acceptance Response: 114 days
Member of:
ISSN
1666-6038 (Online)
1666-6046 (Print)