Copyright and Licensing
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
Images compression is a widely studied topic. Conventional situations offer variable compression ratios depending on the image in question and, in general, do not yield good results for images that are rich in tones. This work is an application of images compression of patient s computed tomographies using neural networks, which allows to carry out both compression and decompression of the images with a fixed ratio of 8:1 and a loss of 2%.
Articles accepted for publication will be licensed under the Creative Commons BY-NC-SA. Authors must sign a non-exclusive distribution agreement after article acceptance.
Review Stats:
Mean Time to First Response: 89 days
Mean Time to Acceptance Response: 114 days
Member of:
ISSN
1666-6038 (Online)
1666-6046 (Print)