
Model and implementation of body movement recognition using Support
Vector Machines and Finite State Machines with Cartesian coordinates

input for gesture-based interaction

Raphael W. de Bettio, André H. C. Silva, Tales Heimfarth and André P. Freire
Computer Science Department, Federal University of Lavras, Brazil

e-mails: {raphaelwb, andrecosta, tales, apfreire}@dcc.ufla.br

Alex G. C. de Sá
Computer Science Department, Federal University of Minas Gerais, Brazil

e-mail: alexgcsa@dcc.ufmg.br

ABSTRACT
The growth in the use of gesture-based interaction in video
games has highlighted the potential for the use of such inter-
action method for a wide range of applications. This paper
presents the implementation of an enhanced model for ges-
ture recognition as input method for software applications.
The model uses Support Vector Machines (SVM) and Finite
State Machines (FSM) and the implementation was based
on a Kinect R© device. The model uses data input based on
Cartesian coordinates. The use of Cartesian coordinates en-
ables more flexibility to generalise the use of the model to
different applications, when compared to related work en-
countered in the literature based on accelerometer devices
for data input. The results showed that the use of SVM and
FSM with Cartesian coordinates as input for gesture-based
interaction is very promising. The success rate in gesture
recognition was 98%, from a training corpus of 9 sets ob-
tained by recording real users’ gestures. A proof-of-concept
implementation of the gesture recognition interaction was
performed using the application Google Earth R©. A prelim-
inary acceptance evaluation with users indicated that the in-
teraction with the system via the implementation reported
was satisfactory.
Keywords: Gesture, SVM, FSM, Kinect, Model.

1. INTRODUCTION
Novel methods for more natural interaction have made the
use of interactive technologies more ubiquitous and present
in a wide range of computer applications used in every-day
life. Advancements in the use of interaction based on geast-
ure recognition created several opportunities to enhance the
interaction in a number of types of applications [1]. In par-
ticular, the use of gesture recognition in video games such
as the Wii R© and the XBox R© have popularised the use of
gesture-based interaction. However, the use of such inter-
action method is not limited to entertainment applications,
but has a great potential to be used in a wide range of ap-
plications, as mentioned by Mitra and Acharya [1]: naviga-
tion and/or manipulation in virtual environments, enabling
young-aged children to interact with computers, sign lan-
guage recognition, enhancements to hearing impaired peo-
ple, forensic identification, and others.
The development of more natural interfaces, including gestu-
re-based interaction, was one of the main aspects mentioned
by Weiser [2, 3] in his vision for the development of ubiqui-
tous computing. In fact, many other research works have
highlighted the importance and potential for the develop-
ment of natural gesture-based interfaces in a number of dif-

ferent contexts [4, 5, 6, 7, 8].
The availability of generic easy-to-implement interface com-
ponents is an essential aspect to allow developers to use
gesture-based interaction in their applications. Making ge-
neric models for gesture-based interaction available to de-
velopers can simplify the implementation of more interac-
tive interfaces, without the need to implement complex ges-
ture recognition algorithms.
Several different approaches and algorithms have been used
to perform automatic gesture recognition, such as the appli-
cation of Hidden Markov Models (HMM) [9, 10, 11, 12], Fi-
nite State Machines (FSM) [13, 14, 15, 16], Fuzzy Logic [17]
and Support Vector Machines (SVM) [16, 18].
Previous research studies have proposed the implementa-
tion of gesture and movement recognition using SVM and
FSM. In the work performed by Matsunaga and Oshita [18],
for example, this approach was applied for the recognition
of movements with accelerometers used in the Wii R© video
game. The results of this implementation showed that the
use of SVM and FSM for gesture recognition was very pro-
mising. However, the approach had technological limita-
tions due to the use of input via accelerometers.
Research works reporting on the use of SVM and FSM for
gesture recognition with users’ postures represented using
Cartesian coordinates have not been encountered in the lit-
erature. The use of Cartersian coordinates for data input for
recognition provides more flexibility for the recognition of
gestures. Unlike accelerometers, the use of Cartesian coor-
dinates enables the recognition of a wider range of move-
ments, once they can be used to represent any posture, and
a movement can be defined as a set of postures in a given
time-span.
This paper presents the definition and implementation of a
computational model for gesture-based interaction in com-
puter applications, by means of data input with Cartesian
coordinates. The enhanced model was based on the model
proposed by Matsunaga and Oshita [18], using SVM and
FSM, with a better potential for generalisation of the types
of movement that can be recognised by the use of Cartesian
coordinates instead of accelerometers.
The implementation used a Kinect R© device [19] for the ac-
quisition of the postures. The training of the recognition al-
gorithm was performed based on 9 sets of data obtained from
real users’ gestures, with a success rate of 98% in the recog-
nition. A proof-of-concept implementation was performed
to evaluate the adequacy of the gesture recognition imple-
mentation to be used as input method for applications. The
implementation of a gesture-based interface for the applica-

JCS&T Vol. 13 No. 2 October 2013

69

tion Google Earth R© was successfully accomplished, and the
results from a preliminary acceptance evaluation indicated
that the system worked satisfactorily.
This paper is organised as follows. Section 2 presents a re-
view of the literature and related work. Section 3 presents
the main concepts of the techniques and technologies used
in this work. Section 4 details the description of the compu-
tational model used for the gesture recognition used in this
research. Section 5 presents the implementation of a proof-
of-concept of the model and the results from the preliminary
acceptance evaluations. Finally, Section 6 presents the con-
clusions and proposed future work.

2. RELATED WORK
In this section we present the main studies that applied ap-
proaches related to thosed used in the present article. We
also discuss the main gaps encountered in these works that
were addressed in our approach.
Oshita and Matsunaga [16] proposed a method for automatic
learning for gesture recognition. In their work, they com-
bined two different techniques for pattern recognition: 1)
Self-Organising Maps (SOM), used to divide training data
with users’ gestures into different phases to build a finite
state machine (FSM) for each gesture and 2) Support Vector
Machines (SVM), applied to learn the transition conditions
for each state (gesture phase) of the state machine, consid-
ering that there was one SVM for each state. Each of those
methods was more adequate to different parts of the pro-
cess. SOMs provide good features to categorise data into
groups. SVMs have good performance to partition char-
acteristics spaces into different regions belonging to each
class. Tests performed by Oshita and Matsunaga [16] in-
volved both simple and complex gestures. Both types of
gestures had satisfactory recognition success rates. The pro-
cess to build state machines to define transitions in gesture
recognition to generate movements in the work presented in
this paper was based on Oshita and Matsunaga’s [16] pro-
posal.
In another related work, the same author [18] presented a
method where the state machine is set manually. The main
difference between the approach proposed by Matsunaga and
Oshita [18] and the present work was the input data for the
model. In the present work, the recognition of gestures was
based on transitions from positions (Position X to Position
Y, for example) and not on parts of movements detected by
accelerometers (e.g. right leg up, right leg down) as used
in Matsunaga and Oshita [18]. In the work performed by
Matsunaga and Oshita [18], the gesture recognition was per-
formed using a Wii R© remote control, that is based on ac-
celerometers. In the present work, a Kinect R© device was
used to recognise gestures. By using a Kinect R© device,
it was possible to perform the gesture recognition by pro-
cessing digital images, in which the human body joints are
recognised by a process that results in a set of Cartesian co-
ordinates.
In another work, developed by Biswas and Basu [20], a Ki-
nect R© device was applied as a means to perform body re-
cognition. However, their work was limited to posture re-
cognition and did not recognise movements. Biswas and
Basu [20] also used Computer Vision techniques that were
based on images generated by the Kinect R© device, whilst
in the present work, pre-processed data obtained from the
device were used to recognise the position of body joints.
Another similar work was developed by Ren et al. [21], that
used input data generated by the camera in a Kinect device
for hand gesture recognition.

Song et al. [22] performed a study with the recognition of
continuous movements of hands and body, and presented a
computational model using SVMs to recognise body move-
ments. However, similarly to the work performed by Biswas
and Basu [20], the recognition was performed directly on
the images generated by the camera, and not based on pre-
processed data with more refined information about the po-
sition of body joints.

3. THEORETICAL BACKGROUND

Support Vector Machines
In the present work, Support Vector Machines (SVM) was
used to perform the recognition of body movements. The
main goal of this technique is to build a hyperplan separator
to abstract a decision surface for each input. The decision
process consists of distinguishing data input from two oppo-
site classes. The decision model defines a maximum margin,
which is the maximum distance between a separating hyper-
plan and the nearest point to the two classes in relation to
this hyperplan [23]. Once the margin is calculated, two sup-
port vectors paralell to the hyperplan are added to the model.
The distance of each vector to the hyperplan is defined as the
value of the maximum margin. At the end of the process, a
given data input is classified according to its proximity to
each vector.
Another issue with the use of SVM a limitation when it is not
possible to separate data linearly. When this property occurs
in some of the input data, one of the ways to overcome this
issue is to assign a flexible margin. This way, the modelling
of a SVMs will allow for empirical errors while trying to
minimise them [24], maximising the margin in relation to
the separating hyperplan.
If the use of a flexible margin for classification is not ad-
equate due to the complexity of the data, another possible
approach is to change the search space in an algorithm, in
order to make it separable. This can be done by using a
Kernel, which is a function that transforms the dimension of
the input data [25]. This is normally performed when the
separating surface cannot be done by a straight line (simple
hyperplan). Then, a plan with more dimensions is used to
enable the data separation using a hyperplan.
However, such transformation can lead to the Curse of di-
mensionality, as the number of dimensions can become too
large, whilst the quantity of example remains the same. This
can make the solution to the problem considerably more
complex.
There are a number of Kernel functions that can be used,
with the most common being polinomial, gaussian and sig-
moidal functions [26]. An analogy can be made between the
choice of a kernel function and the choice of an activation
funtion in an artificial neural network.
As pointed out by Hsu et al. [27], the configuration of a Sup-
port Vector Machine is less complex than an artificial neural
network. In order to obtain a better generalisation capac-
ity with artificial neural networks, it is necessary to obtain
a certain sensibility (or experience) to define empirical data
(supervised learning), such as the learning rate and momen-
tum, for example.
Besides, according to Haykin [28], SVM used for machine
learning can provide good performance in terms of generali-
sation in problems related to pattern classification and linear
regression, despite the fact that it does not incorporate do-
main knowledge about the problem. This is a unique feature
of SVMs.

JCS&T Vol. 13 No. 2 October 2013

70

Kinect
This section provides an overview of the Kinect R© device,
used in this work to obtain information about users’ body
movements and postures, in order to incorporate its structure
into a framework to manipulate computer applications by
means of gestures and body movements. All information
was based from the technical manual [19] provided with the
device API.
Kinect R© is a device developed by Microsoft to be used as
an input medium for the videogame XBOX R© 360, enabling
users to interact in a natural manner with games by body
movements and gestures, in other words, with a natural user
interface (NUI).
The programming interface in the Kinect R© Software Devel-
opment Kit (SDK) provides a sophisticated software library
and tools to help programmers develop applications using
the Kinect R© device. The components available on the Win-
dows Kinect SDK are: Kinect hardware, Microsoft Kinect
drivers, NUI API, KinectAudio DMO and Windows 7 de-
fault APIs. Considering the hardware aspects, the Kinect
SDK contains:

• RGB camera sensor - with the ability to recognise
the users’ faces;

• Four-component microphone - with the ability to
recognise users’ voices;

• Depth sensor - with the ability to detect users’ body
joints in a 3D space.

In the work presented in this paper, the Depth sensor and the
NUI API were particularly important for the implementation
of the model. The NUI API consists of a set of APIs that
retrieve data from the image sensors and enables the control
of other devices of applications from the Kinect R©.
With the aid of the NUI Skeleton API (part of the NUI API),
it was possible to obtain detailed information about the po-
sition of an individual traced by the Kinect R© device. The
NUI Skeleton API is able to recognise up to two individu-
als. However, in the present work, the model considered that
only one individual would be interacting at one time.
Fig. 1 illustrates the 20 body joints that can be recognised
using the Kinect R© device.

Fig. 1: Skeleton positions available in the Kinect device
relative to the human body [19].

As mentioned previously, the NUI Skeleton API provides
information about the position of an individual. This infor-
mation is available as a vector containing the Cartesian po-
sitions of all body joints shown in Fig. 1. This vector was

used as the input to the gesture recognition model described
in the following section.

4. GESTURE RECOGNITION MODEL
This section presents the three steps used in the computa-
tional model for gesture recognition used in the present work.
The model consists of the following steps: 1) data pre-pro-
cessing, 2) posture classification and 3) movement classifi-
cation.

Data pre-processing
The first version of the model implemented in this work
considered initially only the right arm, using the following
joints: right shoulder, right elbow and right hand. The right
wrist was not considered due to its Cartersian coordinates in
a 3D space being too close to the coordinates of the right
hand.
During the pre-processing it is necessary that the Cartesian
coordinates undergo a translation process, with the right sho-
ulder as the reference point. The choice for the right sho-
ulder was made in order to allow for more flexible move-
ments. By having coordinates relative to the right shoulder,
the movement would be independent of the users’ lateral po-
sition in relation to the capture device.
The translation process is performed following the process
illustrated at Fig. 2 and defined by the Eq. (1). Firstly, each
black point illustrated in the figure was named as P1, P2
and P3, each being, respectively, the shoulder, elbow and
hand. The main objective of this process is to translate the
points P1, P2 and P3 from their original position, repre-
sented in Fig. 2-I to the final position, represented in Fig. 2-
II. In order to perform this translation, point P1, as de-
scribed previously, was translated as being the origin, and
points P2 e P3 were translated having point P1 as refer-
ence.

Fig. 2: Graphical representation (in 3D space) of the
applied translation process.


x′

y′

z′

1

 =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 ·


x
y
z
1

 (1)

In the Eq. (1), dx, dy e dz represent the translation vector;
x, y e z are the Cartesian coordinates of the initial positions
and x,y e z are the Cartesian coordinates of the final posi-
tions. The translation can also be represented in the follow-
ing manner (Eq. (2)).

P ′ = T (dx, dy, dz) · P (2)

In the representation of the Eq. (2), T is defined as a trans-
lation function; P is the initial position of point P and P is
the final position of point P after the translation.

JCS&T Vol. 13 No. 2 October 2013

71

According to the mathematical definition of the problem,
point P1 has the Cartesian coordinates x1, y1 e z1, point
P2 has coordinates x2, y2, and point P3 has x3, y3 e z3,
i.e., P1 = (x1, y1, z1), P2 = (x2, y2, z2), and P3 =
(x3, y3,z3). The translation of P1 to the origin position is
performed according to the Eq. (3).

T (−x1,−y1,−z1) =


1 0 0 −x1
0 1 0 −y1
0 0 1 −z1
0 0 0 1

 (3)

Hence, after the translation of P1 to the origin, the follow-
ing points are obtained. The equations Eq. (4), Eq. (5) and
Eq. (6) show the resultant points.

P ′1 = T (−x1,−y1,−z1) · P1 =


0
0
0
1

 (4)

P ′2 = T (−x1,−y1,−z1) · P2 =


x2 − x1
y2 − y1
z2 − z1

1

 (5)

P ′3 = T (−x1,−y1,−z1) · P3 =


x3 − x1
y3 − y1
z3 − z1

1

 (6)

Posture classification
The second step in the model for gesture recognition is the
classification of individual postures. Five different postures
based on movements of the right arm were defined for this
model. Those postures are illustrated in Fig. 3, and described
as following.

• a - Right arm pointing upwards;

• b - Right arm pointing downwards;

• c - Right arm resting;

• d - Right arm pointing to the left;

• e - Right arm pointing to the right.

Fig. 3: Five postures considered in the posture classifi-
cation.

As mentioned previously, the classification of those posturse
considered three joints (shoulder, elbow and hand) with the
Cartesian coordinates having been translated having the right
shoulder as reference.
The next step in the classification was to use a Support Vec-
tor Machine that was able to recognise the defined postures.
The parameterisation of the Support Vector Machines was
performed according to the method defined by Hsu et al. [27].
The type of SVM used was a Support Vector Classification

(C-SVC), specialised in classification problems. In order to
do this, it was necessary to normalise collected sample data,
making the coordinates x, y and z of each joint considered
(elbow and hand) in the sample normalised in the range be-
tween -1 and 1.
The chosen kernel function was a Radial Basis Function
(RBF). This function enables the solution of problems that
are non-linearly separable and has the advantage of having
only two empirical parameters - cost and gamma, repre-
sented by C and γ, respectively. The values used in this
work for C and γ were 0.98 and 0.001, respectively. The
Eq. (7) describing RBF is presented as following.

K(x, y) = eγ‖x−y‖
2

(7)

The model for the SVM training was based on classes and
attributes. A class consists of a number of attributes. Af-
ter a system based on SVM is trained, this system is able to
determine the probability that a set of attributes is part of a
given class. This way, each of the five postures was defined
as a class, with each of these classes being defined by 6 at-
tributes. Three of those attributes are the coordinates x, y
and z, corresponding to the elbow joint, and the other three
are the x, y and z coordinates corresponding to the hand po-
sition. The third joint (the shoulder) was not considered, as
it was translated as being the origin point (0, 0, 0). For this
reason, after the pre-processing stage, this position will be
always the same.

Movement classification
The third step in the model for gesture recognition is the
movement classification. In this model, a movement consists
of a sequence of postures.
Based on the model adopted by Oshita and Matsunaga [16],
a Finite State Machine (FSM) was created to model move-
ments. According to Louden [29], FSM are mathematical
models to describe particular types of algorithms. In par-
ticular, FSM can be used to describe the process of pattern
recognition in input strings and can also be used to build
search systems.
For the research reported in this paper, finite state machines
were built having only one initial state (posture c - arm rest-
ing), defining possible movements when it was possible to
reach other states following transitions from the initial state.
Each other state in the machine is represented by a posture
a, b, d and e, being respectively states 1, 2, 3 and 4. There is
only one final state. The state machine is illustrated in Fig. 4.

Fig. 4: Representation of Finite State Machine for move-
ment recognition.

This way, it was possible to identify the following move-
ments: arm resting to arm pointing upwards, arm resting to
arm pointing downwards, arm resting to arm pointing to the
right, and arm resting to arm pointing to the left. Fig 5 il-
lustrates the first of those movements and how it is modelled

JCS&T Vol. 13 No. 2 October 2013

72

using a FSM. As soon as posture c (arm resting) is recog-
nised, the machine is positioned at state 0. Following, states
1, 2, 3, or 4 can be reached if some movement from the rest-
ing state (0) is identified. If a non-recognised movement is
identified, the machine returns to the initial state.

Fig. 5: Representation of transition from state 0 (initial)
to state 1 (arm pointing upwards).

The next section describes how this model was implemented
in an application as a proof of concept and preliminary ac-
ceptance tests performed with users.

5. PROOF-OF-CONCEPT IMPLEMENTATION
AND PRELIMINARY ACCEPTANCE TESTS

This section describes the implementation of the gesture re-
cognition model in an application as a proof of concept and
preliminary acceptance tests performed with users.
As presented in previous sections, the Kinect R© device, when
integrated with the software library NUI Skeleton API is
able to identify 20 body joints of up to two different indi-
viduals. However, this API does not provide resources to
classify postures or movements, being restricted to making
available vectors containing Cartesian coordinates that may
be used as an input to build applications. The main goal of
the proof-of-concept implementation described in this sec-
tion was to show the suitability of the model for gesture re-
cognition presented in the previous sections to be used as the
input method of interactive applications. The chosen appli-
cation for the first implementation was Google Earth R©.
The prototype contains three main components: a posture
classification (PC) module, a movement classification (MC)
module and a keyboard simulator (KS). The architecture of
this implementation is described in Fig. 6. The symbols used
in the figure are described as following.

• P1 e P2 - Positions 1 e 2;

• M1 - Movement 1;

• x1,y1,z1 - xn,yn,zn - Vector of Cartesian coordinates
that constains users’ joint positions identified by the
Kinect R© device;

• PC - Posture classification module;

• P1,P2 and PN - Postures 1,2 and n;

• MC - Movement classification module;

• KS - Keyboard simulator;

• A, CTRL+A - Keys (or keystrokes) that can be related
to a movement.

The first component, the Posture Classification (PC) mod-
ule, is responsible for classifying postures enacted by users
and recognised by a Kinect R© device. Aiming to simplify the
implementation, this component has been built based on api
SVMLIB fully described in Chang and Lin [26]. By eval-
uating the examples of postures (P1 and P2), it is possible

Fig. 6: Architecture of the implemented prototype.

to observe that the Cartesian coordinates identified as x1,
y1 and z1 represent different points in a 3D space, i.e., they
can be used as landmarks to identify the two examples of
postures. However, the main goal of the prototype is to be
able to identify any posture. In order to do this, it is nec-
essary that more joints be recognised. The SVM technique
was used due to its ability to classify groups of coordinatse,
and hence, classify any posture.
The second component, the movement classification (MC)
module is based on the concept that a movement consists of
a sequence of postures. Following the example in Fig. 6,
movement M1 consists of the sequence composed by pos-
tures P1 and P2. In order to enable the mapping of any se-
quence of postures, state machines were designed, in which
each state identifies one posture, and the transitions model
changes in postures to identify movements.
The third component, the keyboard simulator (KS), is re-
sponsible for simulating the action of pressing a key or key-
strokes when any movement is successfully identified by the
movement classification module. By using this module, the
prototype can use any movement as an input for applications
that can be operated via keyboard.
Based on the postures and joints previously defined, data
from users were collect to train the recognition algorithm
from nine different participants. Each participant was posi-
tioned at a pre-defined distance from the Kinect R© device (2
meters), and 100 samples of snapshots of postures were col-
lected (20 of each posture) for each participant. This made
for a total of 900 snapshots in the sample. Given the lower
complexity of the movements considered in this version of
the implementation, the sample of nine participants would
be enought to capture the core features needed for the train-
ing of the SVM, as was later confirmed by the satisfactory
sucess rate.
The training of the algorithm for this module was performed
using two different methods, in order to compare the results.
Both methods grouped snapshot samples into 9 sets, being
6 sets used for training and 3 sets used for tests. The main
different between the two methods was the way the sam-
ples were grouped to generate the training and test sets - one
method grouped samples based on the individuals and the
other grouped samples randomly.
In the first method, in which samples were grouped by indi-
viduals, each of the 9 data sets contains samples for a single
individual. Based on a combinatorial analysis, by having 9
sets being combined into 2 groups, being one group with 6
sets and the other with 3 sets, a total of 84 possible combina-

JCS&T Vol. 13 No. 2 October 2013

73

tions can be obtained. All those combinations were tested,
with an average success rate of 82.920%, and standard devi-
ation 11.381%.
With the second method, grouping samples randomly, 9 data
sets were selected from the samples randomly in the propor-
tion of 80/20 (80% for training and 20% for tests). The ran-
dom selection was built in a way that all wamples were used
only once, without repetition. Based on these sets, the same
84 possible combinations were tested, with a resulting aver-
age success rate of 98.531% and standard deviation 1.233%.
Fig. 7 presents a graph comparing the results from the two
different methods. It is possible to observe that the method
with random grouping of samples had a considerably higher
success rate than the method that grouped samples based on
each individual.

Fig. 7: Success rates with different training methods.

The effectiveness of pattern recognition tools (including the
SVM) is directly proportional to the quality of the data used
for training. The quality of the data is determined by how
representative the training data is in relation to the data used
in testing and in the final application. This way, based on
the results found in this evaluation, the second method had
a much better effectiveness. This is probably due to the fact
that the training was based on samples from all individuals,
differently from the first method, where training data were
based on individuals being considered separately. The sec-
ond approach was able to represent a wider range of Carte-
sian coordinates and body joints that represented a posture,
yielding a better success rate in the recognition.
After training the recognition algorithm, the architecture de-
scribed in Fig. 6 was integrated to the application Google
Earth R©, in order to allow it to be operated using gesture in-
teraction. This application provides features to enable users
to visualise satellite photos in a 3D space in the form of a
globe. The reason why this application was chosen was be-
cause the interaction with the globe can be performed using
simple keyboard operations (left-arrow key, right-arrow key,
upward key and downward key). The keyboard commands
were linked to specific movements detected by the move-
ment classification module. Fig. 8 shows an illustration of
the prototype and the keyboard simulation module.
After the implementation of the prototype with gesture re-
cognition, a preliminary acceptance test was performed with
9 users. Users were asked to interact with Google Earth us-
ing movements with their right arm, after having been given
instructions about the basic movements that can be used in
the application. They were then asked to rate the difficulty
to use the system in a 5-point Likert scale ranging from 1 -
very difficult to 5 - very easy. The vast majority of answers
were between 4 (easy) and 5 (very easy).

6. CONCLUSIONS

This paper presented the results of the implementation of
a model for gesture recognition for interactive applications,
based on input via Cartesian coordinates. The work pre-
sented improvements based on a model proposed by Mat-
sunaga and Oshita [18] with Support Vector Machines and
Finite State Machines. The improved model presented in
this work can be generalised to a wider range of applications
due to the use of Cartesian coordinates as input, as opposite
to data entry based on accelerometers performed in previous
works.
The results of the training algorithms with 9 sets obtained
with real users were very satisfactory, with a success rate of
98% in the recognition of gestures.
The results obtained from this work show that the use of ges-
ture recognition based on SVM and FSM is very promising.
After the preliminary acceptance tests with users that showed
that the use of basic operations was satisfactory, we intend
to conduct future studies to further explore into more detail
different issues related to the interaction based on gestures,
and its relationship to the usability of applications.
As future work, we also intend to improve the implemen-
tation of the model by increasing the number of Cartesian
coordinates considered in the gesture recognition, in order
to be able to recognise other postures and other movements.
We also intend to extend the model to recognise other types
of movements, such as moving towards or away from the
computer.

7. REFERENCES
[1] S. Mitra, and T. Acharya, Gesture Recognition: A Sur-

vey, IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, May, 2007,
vol. 37, no. 3, pp. 311–324.

[2] M. Weiser, The Computer for the 21st Century, Scien-
tific American – Special Issue on Communications, Com-
puters, and Networks, September, 1991, vol. 265, no. 3,
pp. 94–104.

[3] M. Weiser, Some Computer Science Issues in Ubiqui-
tous Computing, Communications of the ACM – Special
Issue on Computer Augmented Environments: Back to the
Real World, July, 1993, vol. 36, no. 7, pp. 75–84.

[4] S. S. Rautaray, and A. Agrawal, Real Time Multiple
Hand Gesture Recognition System for Human Computer
Interaction, International Journal of Intelligent Systems
and Applications (IJISA), May, 2012, vol. 4, no. 5, pp. 56–
64.

[5] K. A. Yuksel, and S. H. Adali, Prototyping Input Con-
troller for Touch-less Interaction with Ubiquitous Envi-
ronments, Proceedings of the 13th International Confer-
ence on Human Computer Interaction with Mobile De-
vices and Services (MobileHCI’11), Stockholm, Swee-
den, August-September, 2011, pp. 635–640.

[6] P. M. Yanik, J. Manganelli, J. Merino, A. L. Threatt, J.
O. Brooks, K. E. Green, and I. D. Walker, Use of Kinect
Depth Data and Growing Neural Gas for Gesture based
Robot Control, Proceedings of the 6th International Con-
ference on Pervasive Computing Technologies for Health-
care (PervasiveHealth), San Diego, California, USA, 21-
24 May, 2012, pp. 283–290.

[7] M. F. Shiratuddin, and K. W. Wong, Non-contact Multi-
hand Gestures Interaction Techniques for Architectural
Design in a Virtual Environment, International Confer-
ence on Information Technology and Multimedia (ICIM),
Kajang, Malaysia, 14-16 November, 2011, pp. 1–6.

[8] M. Roccetti, and G. Marfia, Recognizing Intuitive Pre-
defined Gestures for Cultural Specific Interactions: An

JCS&T Vol. 13 No. 2 October 2013

74

Fig. 8: Illustration of the prototype with the keyboard simulation module.

Image-based Approach, Proceedings of the IEEE Con-
sumer Communications and Networking Conference, Las
Vegas, Nevada, USA, 8-11 January, 2011, pp. 172–176.

[9] L. R. Rabiner, A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition, Pro-
ceedings of the IEEE, February, 1989, vol. 77, no. 2,
pp. 257–286.

[10] J. Yamato, J. Ohya, and K. Ishii, Recognizing Human
Action in Time-sequential Images using Hidden Markov
Model, Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, Illi-
nois, 15-18 June, 1992, pp. 379–385.

[11] F. Samaria, and S. Young, HMM-based Architecture
for Face Identification, Image and Vision Computing, Oc-
tober, 1994, vol. 12, no. 8, pp. 537–543.

[12] F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell,
F. Guédy, and N. Rasamimanana, Continuous Realtime
Gesture Following and Recognition, Proceedings of the
8th International Conference on Gesture in Embodied Co-
mmunication and Human-Computer Interaction, Biele-
feld, Germany, 2010, pp. 73–84.

[13] J. Davis, and M. Shah, Visual Gesture Recognition,
IEEE Proceedings - Vision, Image and Signal Process-
ing, April, 1994, vol. 141, no. 2, pp. 101–106.

[14] P. Hong, M. Turk, and T. S. Huang, Gesture Modeling
and Recognition using Finite State Machines, Proceed-
ings of the Fourth IEEE International Conference on Au-
tomatic Face and Gesture Recognition: IEEE Computer
Society, Grenoble, France, 28-30 March, 2000, pp. 410–
415.

[15] A. F. Bobick, and A. D. Wilson, A State-based Ap-
proach to the Representation and Recognition of Gesture,
IEEE Transactions on Pattern Analysis and Machine In-
telligence, December, 1997, vol. 19, no. 12, pp. 1325–
1337.

[16] M. Oshita, and T. Matsunaga, Automatic Learning of
Gesture Recognition Model using SOM and SVM, Pro-
ceedings of the 6th International Conference on Advances
in Visual Computin (ISVC’10) - Volume Part I , Las Ve-
gas, Nevada, USA, September, 2010, pp. 751–759.

[17] M. Lech, and B. Kostek, Gesture-based Computer Con-
trol System Applied to the Interactive Whiteboard, Pro-
ceedings of the 2nd International Conference on Infor-
mation Technology (ICIT), Gdansk, Poland, 28-30 June,
2010, pp. 75–78.

[18] T. Matsunaga, and M. Oshita, Recognition of Walk-
ing Motion Using Support Vector Machines, Proceedings
of the 1st International Symposium on Information and

Computer Elements (ISICE), 2007, pp. 337–342.
[19] Microsoft Research, Programming Guide: Getting Sta-

rted with the Kinect for Windows SDK Beta from Mi-
crosoft Research, Microsoft Corporation, Technical Re-
port, 2011.

[20] K. K. Biswas, and S. K. Basu, Gesture Recognition
using Microsoft Kinect, Proceedings of the 5th Interna-
tional Conference on Automation, Robotics and Applica-
tions (ICARA), Wellington, New Zealand, 6-8 December,
2011, pp. 100–103.

[21] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, Robust Hand
Gesture Recognition with Kinect Sensor, Proceedings of
the 19th ACM International Conference on Multimedia,
Scottsdale, Arizona, USA, November-December, 2011,
pp. 759–760.

[22] Y. Song, D. Demirdjian, and R. Davis, Continuous Bo-
dy and Hand Gesture Recognition for Natural Human-
Com-puter Interaction, ACM Transactions on Interactive
Intelligent Systems (TiiS) – Special Issue on Affective In-
teraction in Natural Environments, March, 2012, vol. 2,
no 1, pp.1–28.

[23] M. A. Hearst, Support Vector Machines, IEEE Intelli-
gent Systems and their Applications – Issue: Computing
& Processing (Hardware/Software), July-August, 1998,
vol. 18, no. 4, pp. 18–28.

[24] A. C. Lorena, and A. C. P. L. F. Carvalho, An Introduc-
tion to Support Vector Machines (in Portuguese), Jour-
nal of Applied and Theoretical Informatics (RITA), 2007,
vol. 14, no. 2, pp. 43–67.

[25] M. Behzad, K. Asghari, M. Eazi, and M. Palhang, Gen-
eralization Performance of Support Vector Machines and
Neural Networks in Runoff Modeling, Expert Systems
with Applications: An International Journal, May, 2009,
vol. 36, no. 4, pp. 7624–7629.

[26] C. C. Chang, and C. J. Lin, LIBSVM: A Library for
Support Vector Machines, 2012. Available in: http://www.
csie.ntu.edu.tw/ cjlin/libsvm. Accessed in July, 2012.

[27] C. Hsu, C. C. Chang, and C. J. Lin, A Practical Guide
to Support Vector Classification, Department of Computer
Science National Taiwan University, Taipei 106, Taiwan,
2010. Available in: http://www.csie.ntu.edu.tw/˜cjlin/pa-
pers/guide/guide.pdf

[28] S. Haykin, Neural Networks: A Comprehensive Foun-
dation, Upper Saddle River, NJ, USA, Prentice Hall PTR,
Second Edition, March, 1999.

[29] K. C. Louden, Compiler Construction: Principles and
Practice, Boston, MA, USA: PWS Publishing Co., First
Edition, January 1997.

JCS&T Vol. 13 No. 2 October 2013

75

	Text3: Received: February 2013. Accepted: June 2013.

