
Solving Hard Multiobjective Problems with a

Hybridized Method

Leticia C. Cagnina and Susana C. Esquivel

LIDIC (Research Group). Universidad Nacional de San Luis

Ej. de Los Andes 950 - (5700) San Luis, Argentina.

{lcagnina,esquivel}@unsl.edu.ar

ABSTRACT
This paper presents a hybrid method to solve
hard multiobjective problems. The proposed
approach adopts an epsilon-constraint method
which uses a Particle Swarm Optimizer to get
points near of the true Pareto front. In this
approach, only few points will be generated and
then, new intermediate points will be calculated
using an interpolation method, to increase the
among of points in the output Pareto front. The
proposed approach is validated using two difficult
multiobjective test problems and the results are
compared with those obtained by a multiobjec-
tive evolutionary algorithm representative of the
state of the art: NSGA-II.

Keywords: Particle Swarm Optimization,
Multi-objective Optimization, Epsilon-constraint
Method.

1. INTRODUCTION

A great deal of problems that we find in sci-
ence, industry and other areas, are a kind of
a general optimization problem that involves
multiple objectives. A multiobjective optimiza-
tion problem (MOP) typically is formalized
as the minimization or maximization of [2]:
~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]

T
subject to

~x ∈ X . In other words, we want a single solution
~x that optimizes each one of the k different
objective functions. The problem is that usually
these functions forming a mathematical descrip-
tion of performance criteria, are in conflict with
each other.
In MOP the quality of ~x is no longer measures
as a scalar (single objective optimization case),
but a vector with the values of the k objective
functions. We might have that “~x is better
than ~y” which means that objective vector of
~x is better than that of the ~y in at least one
objective, and no worse in all the others. This is
named dominance and we say that ~x dominates

~y. In the other hand, we might have a case in
which “~x is better than ~y in some objectives,
but ~y is better than ~x in others”. This is named

non dominance and, we say that ~x and ~y are
incomparable or are nondominated.
The set of optimal solutions in X generally is
denoted as Pareto set, and its image in the
objective space as Pareto front. Therefore, the
goal of the optimization is to find or approximate
the Pareto set to obtain the Pareto front (the
true) or some front close to it.
There are different ways to approach MOP,
although the most has concentrated on the
approximation of the Pareto set.
In the last years, some proposal for extending
Particle Swarm Optimization (PSO) algorithms
to treat MOPs, have been published [18, 6, 10, 9].
The Particle Swarm strategy for optimization [5]
uses a population of particles to find solutions
through hyperdimensional search space. The
change of the particle’s position is based on the
social-psychological tendency of individuals, to
emulate the success of other individuals. Each
particle has associated a velocity vector which
drives the optimization process and reflects the
socially exchanged information.
In this paper we propose an alternative algorithm
to solve hard multiobjective optimization prob-
lems, based on the mathematical programming
technique named epsilon-constraint method,
which was hybridized with a PSO algorithm to
enhance the search process of solutions.
Section 2 presents the epsilon-constraint method
and its classification inside the techniques of
resolution of multiobjective problems. Section
3 describes our proposed algorithm. Section
4 shows the test functions selected for our
experiments and the metrics used to evaluate
the behavior of our algorithm. In Section 5 the
experimental setup and results can be observed.
Conclusions and future works are showed in
Section 6.

2. TECHNIQUES TO SOLVE
MULTIOBJECTIVE PROBLEMS

In this section, we present a possible classification
of methods to solve multiobjective problems,

JCS&T Vol. 10 No. 3 October 2010

117

and then, we focus on one of this methods in
particular, the epsilon-constraint technique.

Classification of Methods
The solution of a MOP can be divided into two
different stages: the optimization of the objective
functions involved, and the process of deciding
what kind of “trade-offs” are appropriated from
the perspective of the decision maker.
One possible classification of techniques within
the Operations Research community is that pro-
posed by Cohon and Marks [3]:

1. Techniques which rely on prior articulation
of preferences (non-interactive methods).

2. Techniques which rely on progressive artic-
ulation of preferences (interaction with the
decision maker).

3. Generating Techniques (a posteriori articu-
lation of preferences).

This classification is popular because it clarifies
the way in which each technique handle the
two stages: searching and making multicriterion
decisions [16, 8].
The process of generation methods to find
solutions is divided into two phases: first, the
generation of the efficient solutions and second,
the involvement of the decision maker when all
information is ready. This method is convenient
whenever the decision maker is hardly available
and his interaction is difficult (because he is
involved only in the second phase).
One of the Generating Techniques is the Epsilon-
Constraint method. Usually this method is a
good alternative to solve difficult multiobjective
functions, for which standard multiobjective
optimizers can not obtain good solutions in a
reasonable time and, with a reasonable compu-
tational effort.

The Epsilon-Constraint Method
Proposed by Haimes et al. [7], the idea of this
method is to minimize one objective function at
a time, considering the other objectives as con-
straints bound by some allowable level ǫ. That
is, the problem will be:

minimize fselected(~x)

subject to:

fl(~x) ≤ ǫl for l = 1, 2, · · · , k with l 6= selected

All ǫl define the maximum values that its corre-
sponding objective function can obtain. Varying
the values of epsilon for each objective function
and performing a new optimization process along
the Pareto front, a new point (of the final Pareto

solution set) will be calculated. Each point of
the solution can be generated using any single
objective optimizer (a new run for a new point).
To improve the velocity of the generation
of solutions, the metaheuristics can be used
because they generally offer good results
with a low computational cost. Particularly,
PSO has demonstrated to be efficient in the
optimization of constrained single objective
functions [17, 11, 19, 1].

3. HYBRIDIZING THE
EPSILON-CONSTRAINT METHOD

WITH A PSO

In this work we propose to use the epsilon-
constraint method hybridized with an efficient
algorithm presented in [1], which showed a
competitive performance in single objective
functions optimization. Next, we will explain the
main characteristics of the PSO algorithm, the
hybridization of the epsilon-constraint method
with it and, the final step to obtain a larger
Pareto front as solution of our approach.

The PSO algorithm
The PSO algorithm presented in [1], was able to
approximate the global minimum of constrained
optimization problems with a relatively low
computational cost. For this reason, we selected
it as the technique used by the epsilon-constraint
method to obtain a point in the Pareto front of
a multiobjective function.
Figure 1 shows the algorithm pseudocode,
re-named for short, G-CPSO. This algorithm
is a PSO extended with a simple mechanism
for constraint-handling, a dynamic factor of
tolerance (that is used to treat equalities as in-
equalities), a new mechanism to update velocity
and position, a bi-population and, a shake-
mechanism to avoid premature convergence.
The dynamic tolerance factor was implemented
decreasing the factor value at three different
moments during the run. Its goal was to main-
tain some infeasible solutions at the beginning
of the search process to finally converge towards
solutions that satisfy the equality constraints
with a higher accuracy.
The algorithm uses a different way to update ve-
locity, adding an additional learning factor. The
new particle’s positions are calculated using the
typical update equation or an update Gaussian
equation, depending of a predetermined value of
probability.
The bi-population means that the entire swarm
is split in 2 sub-populations which evolve inde-
pendently in parallel. At the end of the search
process the best solution of both is reported.
With this feature we treat to avoid obtain local

JCS&T Vol. 10 No. 3 October 2010

118

0. G-CPSO:

1. Swarm Initialization

2. Initializate subpop1

3. Initializate velocity for subpop1

4. Initializate subpop2

5. Initializate velocity for subpop2

6. Init tolerance factor

7. Evaluate fitness for each subpop

8. Record pbest and gbest for each subpop

9. Swarm flights through the search space

10. DO

11. FOR each subpop DO

12. FOR i=1 TO numberOfparticles DO

13. Search the best leader in the

14. neighborhood of parti
15. and record in lbesti
16. FOR j=1 TO numberOfdimensions DO

17. Update velij
18. IF probability>(0.075)
19. Update partij with normal eq.

20. ELSE

21. Gaussian update eq.

22. END

23. END

24. END

25. END

26. Keeping particles

27. Calculating % infeasibles

28. IF % infeasibles > 10%

29. Move particles

30. END

31. Evaluate fitness(parti)
32. Record pbest and gbest

33. Update tolerance factor

34. WHILE(current cycle < max cycle)
35. result=BEST(best subpop1,best subpop2)
36. RETURN(result)

Figure 1: Pseudocode of G-CPSO.

optimal (the search space is exploring by 2
sub-populations which are probably guided by
different leaders).
Shake-mechanism is a way to change the direction
of particles in order to obtain values closer to the
optimum reached until a determined moment.
For that, it uses a good particle (a pbest) as
reference. This mechanism was incorporated
due to some stagnation in the search process
observed in difficult problems.
For more details of G-CPSO algorithm descrip-
tion, see [1].

The Hybridization Process
In our work, we use real-value 2D objective func-
tions test to optimize. The ǫ values were set
using an approximation of the dimension of the
Pareto front, and then, we divided it into inter-
vals depending of the number of solution that we
wanted. Hence, the ǫj varies from the best to the
worst value for objective function j. That means
that the search must move from the ideal to the
nadir vectors. The ideal vector is estimated with

0. Epsilon-Constraint with PSO:

1. Solution= ∅

2. ub= f2(G-CPSO(f1,c))
3. lb= f2(G-CPSO(f2,c))
4. t=0.05(ub-lb)

5. δ = (ub-lb)/Pts
6. ub=ub+t

7. lb=lb-t

8. ǫ =lb

9. WHILE ǫ ≤ ub DO

10. x=G-CPSO(f1,ǫ,c)
11. IF x is nondominated in Solution THEN

12. delete all dominated by x

13. add x to Solution

14. ǫ = ǫ + δ
15. RETURN Solution

Figure 2: Pseudocode of our Epsilon-Constraint
Approach.

the individual optimization of each objective (one
at time). The nadir vector it is not easy to cal-
culate [13]. As we are tackling 2 objective prob-
lems, there exists a single method named payoff

table which provides a good estimation of a nadir
vector. We used this method in our approach.
Assuming that the procedure G-CPSO(fl,ǫ,c) is
avaliable as a single objective optimizer that
minimizes the function fl (the others objectives
are the constraints according to the epsilon-
constraint method), with ǫ to determine factibil-
ity of constraints, and running during c cycles,
the procedure returns the best point found.
But we also need G-CPSO(fl,c), that is, when
none constraint is considerated. This last ver-
sion of the procedure is used for calculating the
ideal and nadir vectors, in the first steps of the
our algorithm, showed in Figure 2. The t value
in Figure 2 is the tolerance factor. This value
is necessary because of the points obtained with
G-CPSO are only approximations. The δ value
depends of the number of points (Pts) desired
in the solution Pareto set. The number of eval-
uations is calculated as Pts × c × particles.
Being particles the number of particles in the
population of the G-CPSO procedure. Solution
is the set with the Pareto front found.
The selection of f1 or f2 as the first function to be
optimized is arbitrary. In our case, f1 was always
taken as the objective function to optimize.

Enhancing the Quality of the Pareto front
obtained
Solving hard multiobjective functions can result
computationally expensive, even using epsilon-
constraint method. On the other hand, we
believe that Pareto fronts with less of 50 points
can not be adequate. For that, we consider
that keep the Pts value low is a priority, and

JCS&T Vol. 10 No. 3 October 2010

119

propose to use a simple interpolation technique
to cover a larger area of the true Pareto front.
We interpolate the solution set obtained with
the algorithm of Figure 2, with a cubic splines
interpolation [12]. Finally, we return the set so
obtained as final solution of our approach.

4. TEST FUNCTIONS AND METRICS

To validate the performance of our approach,
we select two difficult multiobjective problems.
These have the particularity that modern mul-
tiobjective evolutionary algorithms can not con-
verge to the true Pareto front, even if the number
of evaluations is not restricted. For that, we want
to test these and conclude if our approach is a vi-
able alternative to solve them.
These two problems were proposed by Okabe [14],
referenced as OKA1 and OKA2. They have 2 and
3 variables respectively, and 2 objective functions.
The geometry of their optimal sets is nonlinear
and strongly biased to the opposite side of the
Pareto front.
We selected the following metrics to evaluate the
performance of our algorithm:

a. Two Set Coverage (CS) metric [20], that is an
indicator of how much a set covers or domi-
nates another one. Considering X and Y two
Pareto fronts, a value of CS(X,Y)=1 means
that all points in X dominate or are equal to
those in Y. A CS(X,Y)=0 indicates the op-
posite. Note that CS(X,Y) it is not the same
that CS(Y,X), so both might be calculated.

b. Spread indicator (Spr), a diversity metric
that measures the extend of spread achieved
among the obtained solutions [4]. A value of
Spr=0 indicates that the obtained front has
an ideal distribution.

c. The Inverted Generational Distance [15]
(IGD), a quality indicator that measures how
far the elements are in the Pareto optimal
set from those in the set of nondominated
vectors found. A IGD=0 indicates that all
the generated elements are in the Pareto true
front.

5. EXPERIMENTAL SETUP

In order to compare the results obtained by
our approach, we use the results obtained with
NSGA-II [4], which is an algorithm representa-
tive of the state of the art in the multiobjective
optimization area.
We ran both algorithms for 15,000 and 25,000 fit-
ness function evaluations for OKA1 and OKA2,
respectively. We had to increase the evaluation
number for OKA2 because is a more hard prob-
lem than OKA1. We aimed to obtain a set of 50

Table 1: Averaged metric values for OKA1.
Means (and standard deviations).

Metric ǫ−G-CPSO NSGA-II

Spread 0.6978 0.7079
(0.2200) (0.0630)

IGD 0.0024 0.0043
(0.0006) (0.0019)

CS(ǫ−G-CPSO,NSGA-II) 0.5712 -
(0.0861) -

CS(NSGA-II,ǫ−G-CPSO) - 0.2356
- (0.0730)

Table 2: Averaged metric values for OKA2.
Means (and standard deviations).

Metric ǫ−G-CPSO NSGA-II

Spread 0.9190 1.1805
(0.2624) (0.1285)

IGD 0.0057 0.0116
(0.0025) (0.0040)

CS(ǫ−G-CPSO,NSGA-II) 0.6332 -
(0.2980) -

CS(NSGA-II,ǫ−G-CPSO) - 0.2287
- (0.1505)

points in the final Pareto fronts.
The parameters adopted here are the same pro-
posed in [1] for G-CPSO: 10 particles, size of
neighborhood=3, c1=c2=c3=1.8, w=0.8 and flip-
probability=0.075. The parameters for NSGA-
II were the suggested by the authors: popu-
lation=50, probability of crossover=0.9, distri-
bution index for crossover=15, probability of
mutation=1/number − variables and the distri-
bution index for mutation=20.
We executed 30 independent runs with both al-
gorithms. The means (and standard deviations)
for each problem are showed in Table 1 and Ta-
ble 2. Note that our approach is referenced as
ǫ−G-CPSO.

We did a one-to-one comparison for each one of
the 30 runs. For OKA1 and OKA2, ǫ−G-CPSO
exhibits better average of metrics than NSGA-II.
For CS metric, we observed the high dominance
of the points obtained with ǫ−G-CPSO over
those obtained with NSGA-II, while did not
happen the same when the metric is calculated
with the points of NSGA-II with respect to
our approach (see last lines of both tables).
The spread metrics reached were high for our

JCS&T Vol. 10 No. 3 October 2010

120

Figure 3: Pareto fronts for OKA1.

Figure 4: Pareto fronts for OKA2.

algorithm (the Pareto set obtained has not a
good distribution of points compared with the
true Pareto front) although those results were
better than the values obtained by NSGA-II.
The IGD are very small for our approach (many
points in our solution are in the true Pareto
front) and are better than those obtained by
NSGA-II.
To illustrate the performance of the algorithms,
Figures 3 and 4 show the results of a single run
for each problem.

6. CONCLUSIONS AND FUTURE
WORK

We have introduced a new proposal to work
on hard multiobjective optimization problems
using a mathematical technique hybridized with
a particle swarm optimizer. The performance
of our approach turned out to be satisfactory
in this preliminary study, even more, in both
cases tested outperformed the results of NSGA-II
algorithm.
Our conclusion is that the results are promising
and this fact encourages us to continue working
in this address, considering additional hard
multiobjective problems with two and three
objective functions.

ACKNOWLEDGMENTS

The authors gracefully acknowledge the contin-
uous support from ANPCyT and the Universidad
Nacional de San Luis.

References

[1] L. Cagnina, S. Esquivel, and C. Coello
Coello. A bi-population pso with a shake-
mechanism for solving constrained numerical
optimization. In IEEE Congress on Evolu-

tionary Computation - CEC2007, pages 670–
676, Singapore, 2007.

[2] C. Coello Coello, G. Lamont, and D. Van
Veldhuizen. Evolutionary algorithms for

solving multi-objective problems. Springer,
2007. ISBN 978-0-387-33254-3.

[3] J. L. Cohon and D. H. Marks. A review
and evaluation of multiobjective program-
ming techniques. Water Resources Research,
11(2):208–220, 1975.

[4] K. Deb, A. Pratap, S. Agrawal, and T. Me-
yarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[5] R. Eberhart and J. Kennedy. A new opti-
mizer using particle swarm theory. In Pro-

ceedings of the Sixth International Sympo-

sium on Micro Machine and Human Science,

MHS’95, pages 39–43, Nagoya, Japan, Octo-
ber 1995. IEEE Press.

[6] J. Grobler and A. P. Engelbrecht. Hy-
bridizing PSO and DE for improved vector
evaluated multi-objective optimization. E-

Commerce Technology, IEEE International

Conference on, 0:1255–1262, 2009.

[7] Y. Y. Haimes, L. S. Lasdon, and D. A.
Wismer. On a bicriterion formulation of
the problems of integrated system identifica-
tion and system optimization. IEEE Trans-

action on Systems, Man, and Cybernetics,
1(3):296–297, 1971.

[8] J. Horn. Multicriterion decision mak-
ing. Handbook of Evolutionary Computation,
1:F1.9:1–F1.9:15, 1997.

[9] W. Jingxuan and W. Yuping. Multi-
objective fuzzy particle swarm optimization
based on elite archiving and its convergence.
Journal of Systems Engineering and Elec-

tronics, 19(5):1035–1040, 2008.

JCS&T Vol. 10 No. 3 October 2010

121

[10] X. Lin and H. Li. Enhanced pareto parti-
cle swarm approach for multi-objective op-
timization of surface grinding process. 2007

Workshop on Intelligent Information Tech-

nology Applications, 2:618–623, 2008.

[11] C. Liu. New dynamic constrained optimiza-
tion pso algorithm. In ICNC ’08: Proceed-

ings of the 2008 Fourth International Con-

ference on Natural Computation, pages 650–
653, Washington, DC, USA, 2008. IEEE
Computer Society.

[12] S. McKinley and M. Levine. Cubic spline
interpolation. Math 45: Linear Algebra.

[13] K. M. Miettinen. Nonlinear Multiobjective

Optimization. Kluwer Academic Publishers,
1999. Boston, Massachusetts.

[14] T. Okabe. Evolutionary Multi-Objective Op-

timization - On the Distribution of Offspring

in Parameter and Fitness Space. PhD thesis,
Bielefeld University, 2004.

[15] D. A. Van Veldhuizen and G. B. Lam-
ont. Multiobjective evolutionary algorithm
research: A history and analysis. Technical
report, Dept. Elec. Comput. Eng., Gradu-
ate School of Eng., Air Force Inst. Technol,
Wright-Patterson, AFB.OH, 1998. TR-98-
03.

[16] D. A. Van Veldhuizen and G. B. Lam-
ont. Multiobjective evolutionary algorithms:
Analysing the state-of-the-art. Evolutionary

Computation, 7(3):1–26, 2000.

[17] Y. Wang and Z. Cai. A hybrid multi-swarm
particle swarm optimization to solve con-
strained optimization problems. Frontiers of

Computer Science in China, 2009.

[18] Y. Wang and Y. Yang. Particle swarm
optimization with preference order ranking
for multi-objective optimization. Inf. Sci.,
179(12):1944–1959, 2009.

[19] E. Zahara and C. Hu. Solving constrained
optimization problems with hybrid particle
swarm optimization. Engineering Optimiza-

tion, 40, 2008.

[20] E. Zitzler, K. Deb, and L. Thiele. Compar-
ison of the multiobjective evolutionary al-
gorithms: Empirical results. Evolutionary

Computation, 8(2):173–195, 2000.

JCS&T Vol. 10 No. 3 October 2010

122

	Text4: Recieved: May 2010. Accepted: July 2010

