
Using Exception Handling to Build Opaque Predicates
in Intermediate Code Obfuscation Techniques

Daniel Dolz Gerardo Parra

Grupo de Investigación en Robótica Inteligente
Departamento de Ciencias de la Computación

Universidad Nacional del Comahue

Buenos Aires 1400

(8300) Neuquén - Argentina

ABSTRACT

Microsoft’s .NET Framework, and JAVA plat-
forms, are based in a just-in-time compilation
philosophy. Software developed using these tech-
nologies is executed in a hardware independent
framework, which provides a full object-oriented
environment, and in some cases allows the inter-
action of several components written in differ-
ent programming languages. This flexibility is
achieved by compiling into an intermediate code
which is platform independent. Java is compiled
into ByteCode, and Microsoft .NET programs
are compiled into MSIL (Microsoft Intermediate
Code). However, this flexibility comes with a
price. With freeware tools available in Internet, it
is quite easy to decompile intermediate codes and
obtain a working, readable version of the source
code. Obfuscation is the most accepted and com-
mercially available technique that developers can
use to protect their intellectual property In this
work, we propose the use of try-catch mechanisms
available in .NET as a way to improve the qual-
ity of one of the building blocks of obfuscation:
opaque predicates.
Keywords: Obfuscation. Obfuscation Transfor-
mation. Opaque Predicates.

1. INTRODUCTION

JAVA applications, and applications developed
under any version of Microsoft .NET Framework
are vulnerable in the sense that it is possible for
anyone with minimum knowledge to get a fully
functional compilable version of the source code
using downloadable free tools. Losing the source
code in hands of an unauthorized organization
with illegal intentions could have the following
consequences:

• Your competence could acquire your money
invested in I+D. Competence may, in an un-
loyal move, launch your very software with

minor tweaks taking advange of your origi-
nal investment.

• A competing organization could find flaws in
the product and use them in their own ben-
efit.

• In the special case of modern encrypting al-
gorithms, whose strength relays in the exis-
tence of an unknown key instead of a par-
ticular set of instructions, getting access to
source code could be useful to practice a
brute force attack against them.

• Access to source code makes easier illegal
pirate-style activities suck as key-cracking,
expirations dates and harlocks tampering.

• A discontent employee may get the source
code of any of the organization’s application,
modify the sql sentences in it, recompile it,
execute it, and perform queries which she is
not allowed to perform according to her level
access. This could result in the loss of valu-
able commercial secrets, for example.

So far we have mentioned money issues, but some
governments such as US government consider this
vulnerability to be a national security issue[6]. In
private industry, it is a well known fact that 75%
of the Fortune 500[1] companies use Microsoft Vi-
sual Studio 2005[9]. Another well known fact is
that the main menaces to organizations today are
not external agents but inner personnel with ac-
cess to company resources from the inside (em-
ployees, contractors, consultants, etc.). This is
not a minor problem[11].
Our line of work, initiated in [4], shows how ob-
fuscation techniques are the branch of Computer
Security that provides the best protection level
within the existing alternatives. In this article we
show how, using run time exceptions, it is possible

JCS&T Vol. 8 No. 2 July 2008

71

to notoriously increase opaque predicates’ quality,
indeed increasing the quality of overall obfusca-
tion and the protection of intellectual property.
This article is organized as follows. It starts with
an introductory description of obfuscation and its
key concepts. Then we describe the constructions
called opaque predicates. In section 4, we present
this work’s proposal to create better opaque pred-
icates. More advanced techniques are introduced
where the concept of using exceptions using try-
catch blocks instead of conditional branch sen-
tences is presented. Finally, in section 5, we re-
port the conclusions and lines for future work.

2. OBFUSCATION - KEY CONCEPTS

To obfuscate a source or an intermediate code is
a process that performs a transformation using
re-writing algorithms, from readable understand-
able code into a functionally-equivalent one but
not readable or understandable for human read-
ers. Figure 1 shows the process and concept of
intermediate code obfuscation.

Figure 1: Intermediate Code Obfuscation.

In a nutshell, most frequent obfuscation tech-
niques are the inclusion of irrelevant loops, unnec-
essary calculations, out of context checks, mean-
ingless identifiers, useless functions, incredible re-
lations, and so on. Other techniques are, nev-
ertheless, way more powerful, in the sense that
they require a deep knowledge of the platform
being obfuscated. They can even be designed
to mess with specific reverse engineering tools.
Next, we discuss some key concepts introduced
by Collberg[2].

Obfuscating Transformation
Let P

t→ P ′ be a transformation of a source pro-
gram P in a target program P ′. P

t→ P ′ is an
obfuscation transformation if P and P ′ have the
same observable behavior. More precisely, in or-
der for P

t→ P ′ to be a legal obfuscation trans-
formation the following conditions must hold:

• IF P fails to terminate or terminates with
an error condition, P ′ may or may not ter-
minate.

• Otherwise, P ′ must terminate and produce
the same output as P .

P ′ has certain features to difficult the understand-
ing of the decompiled code. Observable behavior
is defined loosely as ”behavior as experienced by
the user”. This means that P ′ may have side ef-
fects (such as creating files, sending messages over
the internet, etc.) that P does not, as long as this
side effects are not experienced by the user.
Obfuscation techniques can be classified in four
categories[2]:

• Lexical structure: identifier renaming, for-
mat tweaking.

• Data Obfuscation: embedded resources en-
cryption, metadata encryption, string en-
cryption, hierarchy modification, variable
unification.

• Control Flow Obfuscation: control flow re-
conversion, sentence reordering, loop condi-
tion extensions.

• Preventive Obfuscation: meant exclusively
to create malfunction or even crash known
reverse engineering tools.

Quality of an Obfuscating Transformation
The quality of an obsfuscating transformation t
is measured using four criteria: how hard is for
human readers to understand the obfuscated code
(potency), how hard is for an automated tool to
revert the transformation (resiliency), how well
the obfuscator’s introduced code blends with the
original code (stealth) and how much extra cost,
if any, the obfuscation introduces (cost).

Potency: The potency of an obfuscation
technique indicates, how harder is the obfuscated
code to read for a human reader compared with
the original source. The concept ”harder to read”
cannot be measured objectively, but nevertheless,
software engineering metrics can be used. Such
metrics measure conceptual clarity and maintain-
ability of a referenced program source. For the
purposes of this work, we will measure potency
on a three point scale: high, mid and low.

Resilience: A serious attacker to intellec-
tual property may have some reverse engineering
tools, or may even develop or adapt her own, so
resilience is expressed as the combination of two
measures:

JCS&T Vol. 8 No. 2 July 2008

72

• Programming Effort: the amount of time
required to construct an automatic deobfus-
cator that is able to effectively reduce the
potency of a transformation t.

• Deobfuscator Effort: the execution time
and space required by such an automatic de-
obfuscator to effectively reduce the potency
of t.

It is important to distinguish between resiliency
and potency. A transformation is potent if it
manages to confuse a human reader, but it is re-
silient if it confuses an automatic deobfuscator.
Most resilient transformations are irreversible.
Usually, they remove the information useful to
humans but meaningless for a computer, such as
identifiers. Other transformations, such as the
addition of garbage code can be reverted with dif-
ferent levels of difficulty.

Stealth: It is possible to create potent and
high resilient obfuscation techniques resulting in
a very difficult to understand code. An exam-
ple may be the modification of values in local
variables. Instead of assigning the variable with
the original value as the programmer intended, a
valid obfuscation technique may assign enormous
values in the range of millions and apply calcula-
tions in any location where the variable is used
to maintain equivalence. With this technique,
simple expressions such as while(I ≤ 10) may
become while((I ∗ f(I) − 234)12 ≤ 5748951478)
being functionally equivalent. However, this new
code is easily spotted as strange and alien, and a
reverse engineering may identify it as obfuscator-
introduced very easily. To improve stealth, ob-
fuscator introduced code should look and feel like
the non obfuscator introduced code in order to
make an attacker believe it is valid code. Improv-
ing stealth is not an easy task, because a stealthy
code in a domain may not be stealthy in another.

Cost: The application of many obfusca-
tion techniques, i.e. the one showed above clearly
implies an execution overhead due to the increase
of sentences and calculations. Other transfor-
mations may increase the program requirements
of memory compared with the original program.
Some transformations do not have an overhead
and they may even imply an optimization, such
as identifier renaming. Higher cost means lower
quality.

3. OPAQUE PREDICATES

This work focuses in opaque predicates. Opaque
predicates are the basic blocks of obfuscating

transformations that hide the control flow of the
program[3]. Flow control transformations fall
into three categories:

• Hide the real control-flow behind irrelevant
statements that do not contribute to the ac-
tual computations.

• Introduce code sequences at the object code
for which there exists no corresponding high-
level language construct.

• Remove real control flow abstractions or in-
troduce spurious ones.

Opaque predicates are constructions that do not
belong to the original source code but are intro-
duced by the obfuscator. They are the real thing
in the sense that they branch the run time execu-
tion into the real programmer code and not the
obfuscator introduced spurious one.
Not formally, a variable V is opaque if V has a
property which is known at obfuscation time but
it is not known by a reverse engineer. The same
stands for opaque predicates with boolean values
known by the obfuscator but not by the reverse
engineer. For example, an opaque variable V in-
troduced by an obfuscator with value “10” may
be used to generate true o false constructions by
asking if V == 10, if V < 6, etc. The obfuscating
tool knows the value of V at every point and it is
under its complete control. However, the hardest
for a reverse engineer to find out V ’s value, the
better the obfuscation will work.
Opaque predicate creation is one of the biggest
challenges obfuscator developers face. In fact,
control flow transformations rely mostly on the
quality of the opaque predicates. We’ll use the
same measures (potency, resilience, stealth and
cost) to evaluate the quality of an opaque predi-
cate.

Using Opaque Predicates
Opaque predicates in the following control flow
transformations are critical:

• Dead or irrelevant code insertion. This code
should never execute. Its existence is meant
only to confuse a possible attacker. The
non execution of the irrelevant code depends
solely on an opaque predicate, i.e. dead code
could be placed in an else block of an if sen-
tence with an opaque predicate that always
evaluate to true.

• Loop extension. It may be possible to ob-
scure a source code by tweaking its termina-
tion condition. This can be done by intro-
ducing opaque predicates.

JCS&T Vol. 8 No. 2 July 2008

73

Figure 2: Opaque Predicates using pointers and
alias.
A dynamic structure is built using nodes. Each node has

a boolean token and to pointers that can reference other

nodes. The structure starts with two connected

components, G and H. There are two global g and h

pointers that point to G and H respectively.

• Convert a reducible to a non reducible flow
graph. Intermediate-code based platforms,
such as the ones this works target (Java and
.NET), are compiled to a virtual machine
code which is more expressive than the lan-
guage itself (Bytecode and IL, respectively).
This is not coincidence, because it must be
guaranteed that every higher level language
construction can be converted to the inter-
mediate code language. Language breaking
transformations take advantage of this by
introducing virtual machine instruction se-
quences which have no direct correspondence
with any source language construct, but pre-
serving correct execution using opaque pred-
icates. An example could be a conditional
branch to a sentence inside a while loop, pro-
tected by an opaque predicate that always
evaluates to false in such a way that the cor-
rect execution is not tampered.

Manufacturing Opaque Constructs
The quality of most control flow transformations
is directly dependent on the quality of opaque
predicates. Obvious opaque predicate, such as
P = 0, Q 6= null, etc. are not very resilient at all.
This means that an automated deobfuscation tool
could deduce its values using static analysis tech-
niques without much effort. A higher level of pro-
tection is mandatory. Ideally, we would be able to
create opaque predicates that require worst case
exponential time (in the size of the program) to

break but only polynomial time to construct.

Advanced Techniques
Advanced opaque predicate construction tech-
niques exist. However, they are fundamentally
flawed. One of the problems is the high overhead
introduced, and the other is the visibility of the
conditional jump sentence used to direct the ex-
ecution. Next, we describe the most advanced
techniques for building opaque predicates.

Opaque Constructs Using Objects
and Aliases:

Interprocedural static analysis is significantly
difficult whenever there is a possibility of alias-
ing. In fact, precise flow-sensitive alias analysis
is undecidable in languages with dynamic alloca-
tion, loops and if-statements[5, 10]. Basic idea is
the construction of a dynamic complex structure
with alias and pointers keeping a set of pointers to
that structure. In this way, the obfuscating tool
knows if p and q are equal (being p and q pointers
to a given structure) but an automated deobfus-
cating tool could not known it by the means of a
static analysis. Figure 2 shows an example of a
complex opaque construct structure.

Opaque Predicates Construction Us-
ing Threads: Parallel or multiprocess programs
are way more difficult to analyze than sequential
ones. The reason is their interleaving semantics:
if n code regions can be executed in a parallel
fashion, the program can be executed in n! differ-
ent ways. Depending on the size of n, this could
be a huge number. The opaque predicate tech-
nique would be the same than with objects and
aliases but adding the complexity of parallel exe-
cution.

Detected Problems
These are the most advanced techniques today.
However, in this work we suggest that these tech-
niques are not practical because they imply a very
high cost and they are not stealthy at all.

Cost: In both techniques (objects and
alias and multithreading) a graph structure is cre-
ated which may be (and probably will be) totally
alien to the original program just to the effect to
ask, in some moment, if P = Q or a question
alike. Object-alias technique imply a big spa-
tial cost (memory) and temporal cost (CPU cy-
cles needed to create and maintain the structure).
Multithreading is even worse, because there are
context-switching overheads. There is a practi-
cal consideration also: software fails sometimes.
When this happens, modern environments let the
user know specific data such as stack traces, mem-
ory dumps, etc. Programmers may find this data

JCS&T Vol. 8 No. 2 July 2008

74

useful. However, an obfuscator-dirty stack trace
will probably not be as useful as an uncontami-
nated one.

Visibility: In this work we suggest that
it is not the complexity of the calculations of the
opaque predicate that matters, but its visibility.
It is actually possible to keep a huge, complex
and expensive structure with the goal of keeping
the reverse engineer from knowing if P = Q, but
eventually, he will detect that P and Q are alien
and are not related with the program being an-
alyzed and he will reach to the conclusion that
P = Q is in fact an opaque predicate, even if
he can’t tell its value whenever it is used. Iden-
tifying the opaque predicates is already a very
valuable asset when deobfuscating the program,
because the reverse engineer knows that one of
the two possibilities (true or false) may hide the
real code, and this knowledge may be enough to
accomplish her purposes. An initial tool to de-
tect opaque predicates is nothing more than to
detect every conditional branch sentence, know-
ing that some of them belong to the real program
and some of them are obfuscator-created. This
is trivial. In fact, ildasm.exe tool is already
provided by Microsoft to extract IL intermediate
code from .NET portable executable binary files.
Ildasm sets a blank line after every conditional
branch instruction, making really easy to identify
potential opaque predicates.

4. SUPERIOR OPAQUE PREDICATES:
USING TRY-CATCH-FINALLY

BLOCKS

In this section, we introduce our proposal to cre-
ate higher quality opaque predicates.

Try-Catch-Finally Blocks
Programming languages with need for obfusca-
tion (Java, Visual Basic.NET, C#, managed
C++) implement exception handling with try-
catch-finally constructs. It is not our intention to
describe this construction. Suffice to say that try,
catch and finally are keyword that delimitate dis-
tinct code blocks in a way that, if any exception
occurs inside a try block (exception may occur
even in a different method in a different binary
file) execution is automatically branched to the
first sentence of the catch block. If no exception is
raised, catch block is not executed. Finally block
is optional. When present, it is always executed
and is usually used to perform cleaning tasks in
both cases (exception or not). Classic example of
a finally block can be found in database connec-
tion closing.

Constructing Opaque Predicates Using Ex-
ceptions
Our proposal consists in using really simple and
inexpensive opaque predicates (such as q = 0,
p = null) but avoiding the usage of a conditional
branch sentence and instead, forcing an excep-
tion. So, even if the opaque predicate works with
simple values, it will be extremely difficult for
a reverse engineer to identify the exact sentence
where the branching happens using static analy-
sis techniques. Next, we show examples using
Microsoft’s .NET Intermediate Language, named
MSIL. Explaining MSIL is outside the scope of
this work. ECMA specifications[7, 8] are avail-
able on the web.

Example 1: Opaque Predicate using an IF sen-
tence. The construct is an if (Opaque Predicate
FALSE) then (real code) else (bogus code)

IL_0000: ldarg.1

IL_0001: brtrue.s IL_003e /* conditional branch.*/

........... /* Real app code */

IL_0033: ldstr "Real Code"

IL_0038: call void

[mscorlib]System.Console::Write(string)

IL_003d: ret

........... /* Bogus Code */

IL_003e: ldstr "Bogus obfuscator-introduced code"

IL_0043: call void

[mscorlib]System.Console::Write(string)

IL_0048: ret

Notice line IL 0001 (remarked). It performs the
conditional branch instruction brtrue using the
method argument 1 (ldarg.1). It should be no-
ticed that even when it may be really difficult to
find out the value of this argument, it is really
easy to find out that the brtrue sentence in line
0001. Next, analyzing both then and else blocks,
a reverse engineer may deduce the real code.

Example 2: Opaque Predicate using Try-Catch

IL_0000: ldc.i4.0

IL_0001: stloc.0

try

{

........... /* Real code */

IL_0032: ldstr "Real Code"

IL_0037: call void

[mscorlib]System.Console::Write(string)

IL_003c: ldloc.0

IL_003d: ldarg.1

IL_003e: div

........... /* False Code */

IL_003f: call string

[mscorlib]System.Convert::ToString(int32)

IL_0044: call void

[mscorlib]System.Console::Write(string)

IL_0049: ldstr "Bogus obfuscator-introd. code"

IL_004e: call void

[mscorlib]System.Console::Write(string)

IL_0043: leave.s IL_0032

} // end .try

catch [mscorlib]System.Object

JCS&T Vol. 8 No. 2 July 2008

75

{ /* Real Code */

IL_0055: pop

IL_0056: ldstr " Real Code"

IL_005b: call void

[mscorlib]System.Console::Write(string)

IL_0050: leave.s IL_0032

} // end handler

IL_0052: ret

An interesting exercise may be to identify in
which exact sentence the opaque predicate is,
knowing that the first argument value is the same
that in the previous example, an integer of value
zero. Answer is, in line IL 003e: div. This sen-
tence raises a Division By Zero exception. This
results in the execution continuing in the first sen-
tence of the catch block where the rest of the
real code is. The important fact to notice is
that the induced exception may be anywhere in-
side a code block, indeed not making use of eas-
ily spotable sentences such as conditional branch
sentences. This makes the opaque predicate just
another sentence, not identifiable by means of sta-
tic analysis. Some of the candidate exceptions for
opaque predicates are division by zero, invalid use
of null, types mismatch, out of range conversions
and invalid casts, between others.

Constructing Opaque Predicates Using Ex-
ceptions with Improved Stealth
Let’s go farther with this idea. Given the fact
that the execution bifurcation is achieved raising
a controlled run time error, a good obfuscator
may use commonly used constructions present in
the program to build opaque predicates that look
like this structures.

Example. Invalid Use of Null: Let’s
say the obfuscator detects that the program to
obfuscate makes intensive use of objects that are
instances of a class named CACIC and a method
named Share(). This means that sentences like
A.Share() are common in the program. A is a
variable name and holds an instance of CACIC.
The obfuscator could introduce opaque predicates
in the form of sentences like A.Share(), but in a
place where the value of A is known to be null.
Control Flow obfuscation is correctly made: a re-
verse engineer will find only a code block that
looks like the rest of the code, featuring frequently
used constructs such as A.Share(). However, as
A is null, execution goes to catch block. This is
really difficult to detect with an automated static
analysis, and maybe more difficult performing a
visual analysis of the code, because the bifurca-
tion occurs in a completely common sentence in
the code. In conclusion, these are very stealthy
opaque predicates.

Example in Cooperation With the

Programmer: If the application to obfuscate
access data located in a database, with a little
help from the programmer, exceptions could be
raised inducing erroneous SQL sentences. This
would confuse an unsuspecting reverse engineer
even more because it is not likely that an auto-
mated obfuscation had introduced SQL sentences
in a program.

Limitations
This idea has some limitations. One of them
is that try-catch-finally constructs can be nested
one inside of another, but they can not be over-
lapped. This limits somehow the constructions
that can be created. Another important issue is
that original try-catch-finally must clearly be re-
spected.

5. CONCLUSIONS

Obfuscation is the standard way to protect
source code in modern development environ-
ments. Opaque Predicates are the building blocks
of the Control Flow obfuscating transformations,
and its quality determines the overall obfuscating
quality. We have analyzed the most advanced
techniques to build opaque predicates, such as
alias and multithreading, and we concluded that,
because of their cost, they are not the optimal
solution. In the present work, we propose the
creation of opaque predicates using exceptions
handling in order to create high quality, inex-
pensive and stealthy opaque predicates. Future
work: going deeper into the most advanced fea-
tures of modern environments in order to find out
new ways to protect intellectual property. There
is also much to do in the concept of “functional
equivalence” between the original program and
the obfuscated counterpart.

References

[1] Fortune 500. http://en.wikipedia.org/
wiki/fortune 500.

[2] Christian Collberg and Clark Thompson.
Watermarking, tamper-proofing, and obfus-
cation - tools for software protection.

[3] Christian Collberg, Clark Thompson, and
Douglas Low. Manufactoring cheap, re-
silient, and stealthy opaque construct.

[4] D. Dolz and G. Parra. Ofuscadores de código
intermedio. Reporte preliminar. In VIII
Workshop de Investigadores en Ciencias de
la Computación, 2006.

JCS&T Vol. 8 No. 2 July 2008

76

[5] Susan Horwitz. Precise flow insensitive
May-Alias analysis is NP-Hard. TOPLAS,
19(1):1–6, 1997.

[6] Jeff Hughes and Martin Stytz. Advancing
software security - the software protection
initiative, 2001.

[7] The Common Language Infrastructure
(CLI) Partition II. Metadata Definition and
Semantics.

[8] The Common Language Infrastructure
(CLI) Partition III. Cil Instruction Set.

[9] Microsoft Software Developer Network. Mi-
crosoft Visual Studio 2005 Evaluation Guide.

[10] G. Ramalingam. The undecidability of alias-
ing. TOPLAS, 16(5):1467–1471, 1997.

[11] Revista Information Technology. Suple-
mento Especial Seguridad, 2005.

JCS&T Vol. 8 No. 2 July 2008

77

