Automatic suggestions to improve the quality of scatterplots during its creation

A case study of semantic-based visualization

  • Dana Urribarri VyGLab (UNS-CICPBA), Departamento de Ciencia e Ingenierı́a de la Computación, Universidad Nacional del Sur, Bahı́a Blanca, CP8000, Argentina
  • Martín L Larrea, Dr. VyGLab (UNS-CICPBA), Departamento de Ciencia e Ingenierı́a de la Computación, Universidad Nacional del Sur, Bahı́a Blanca, CP8000, Argentina
  • Silvia M Castro, Dra. VyGLab (UNS-CICPBA), Departamento de Ciencia e Ingenierı́a de la Computación, Universidad Nacional del Sur, Bahı́a Blanca, CP8000, Argentina
Keywords: ontology, scatterplot, semantic-based visualization, semantic reasoner, visualization quality prediction

Abstract

The visualization process is a very complex exploration activity and, even for skilled users, it can be difficult to produce an effective visualization. The result of such process depends on the user's decisions along it. One way to improve the probability of achieving a useful outcome is to assist the user in the configuration and preparation of the visualization. Our proposal consists in live suggestions on how to improve the visualization. These live suggestions are based on the user decisions, and achieved by the integration of semantic reasoning into the visualization process. In this paper, we present a case study for scatterplots visualization that combines ontologies with a semantic reasoner and helps the user in the generation of an effective visualization.

Downloads

Download data is not yet available.

References

W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit: an object-oriented approach to 3D graphics. Kitware, 2004.

S. Escarza, M. L. Larrea, D. K. Urribarri, S. M. Castro, and S. R. Martig, “Integrating semantics into the visualization process,” in Scientific Visualization: Interactions, Features, Metaphors (H. Hagen, ed.), vol. 2 of Dagstuhl Follow-Ups, pp. 92–102, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

E. Bertini, D. Keim, and A. Tatu, “Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization,”IEEE Transactions on Visualization & Computer Graphics, vol. 17, pp. 2203–2212, 09 2011.

H.-J. Schulz, M. Angelini, G. Santucci, and H. Schumann, “An enhanced visualization process model for incremental visualization,” IEEE transactions on visualization and computer graphics, vol. 22, no. 7, pp. 1830–1842, 2016.

D. K. Urribarri and S. M. Castro, “Prediction of data visibility in two-dimensional scatterplots,” Information Visualization, vol. 16, no. 2, pp. 113–125, 2017.

D. J. Duke, K. W. Brodlie, D. A. Duce, and I. Herman, “Do you see what i mean?,” IEEE Computer Graphics and Applications, vol. 25, no. 3, pp. 6–9, 2005.

B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Visual Languages, 1996. Proceedings., IEEE Symposium on, pp. 336–343, IEEE, 1996.

S. K. Card and J. Mackinlay, “The structure of the information visualization design space,” in Information Visualization, 1997. Proceedings., IEEE Symposium on, pp. 92–99, IEEE, 1997.

E. H.-h. Chi, “A taxonomy of visualization techniques using the data state reference model,” in Information Visualization, 2000. InfoVis 2000. IEEE Symposium on, pp. 69–75, IEEE, 2000.

K. W. Brodlie and N. Mohd Noor, “Visualization notations, models and taxonomies,” in Theory and Practice of Computer Graphics 2007, Eurographics UK Chapter Proceedings, pp. 207–212, Eurographics Association, 2007.

B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry, “Task taxonomy for graph visualization,” in Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization, pp. 1–5, ACM, 2006.

M. Tory and T. M ̈oller, “A model-based visualization taxonomy,” Computing Science Department, Simon Fraser University, Technical Report No. TR, vol. 6, 2002.

Z. Xu, H. Chen, and Z. Wu, “Applying semantic web technologies for geodata integration and visualization,” in International Conference on Conceptual Modeling, pp. 320–329, Springer, 2005.

V. Kashyap, K.-H. Cheung, M. Samwald, D. Doherty, M. S. Marshall, J. Luciano, S. Stephens, I. Herman, and R. Hookway, “An ontology-based approach for data integration - an application in biomedical research,” in Real-world Applications of Semantic Web Technology and Ontologies (M. D. Lytras, M. Hepp, and J. Cardoso, eds.), Semantic Web and Beyond, pp. 97–122, Heidelberg: Springer-Verlag, 2008.

T. Nguyen, T. Ho, and D. Nguyen, “Data and knowledge visualization in knowledge discovery process,” Recent Advances in Visual Information Systems, pp. 135–159, 2002.

M. Bouet and M.-A. Aufaure, “New image retrieval principle: Image mining and visual ontology,” in Multimedia Data Mining and Knowledge Discovery, pp. 168–184, Springer, 2007.

K. Thellmann, M. Galkin, F. Orlandi, and S. Auer, “Linkdaviz – automatic binding of linked data to visualizations,” in The Semantic Web - ISWC 2015 (M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, K. Thirunarayan, and S. Staab, eds.), (Cham), pp. 147–162, Springer International Publishing, 2015.

R. Minu and K. Thyagharajan, “Semantic rule based image visual feature ontology creation,” International Journal of Automation and Computing, vol. 11, no. 5, pp. 489–499, 2014.

C. G. Healey, R. S. Amant, and J. Chang, “Assisted visualization of e-commerce auction agents,” in Graphics Interface, vol. 1, pp. 201–208, 2001.

M. Golemati, C. Halatsis, C. Vassilakis, A. Katifori, and U. Peloponnese, “A context-based adaptive visualization environment,” in Information Visualization, 2006. IV 2006. Tenth International Conference on, pp. 62–67, IEEE, 2006.

D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire, and C. T. Silva, “Viscomplete: Automating suggestions for visualization pipelines,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1691–1698, 2008.

O. Gilson, N. Silva, P. Grant, and M. Chen, “From web data to visualization via ontology mapping,” Computer Graphics Forum, vol. 27, no. 3, pp. 959–966, 2008.

K. Brodlie, D. Duce, D. Duke, et al., “Visualization ontologies: Report of a workshop held at the national e-science centre,” tech. rep., e-Science Institute (April 2004), 2004.

M. Chen, D. Ebert, H. Hagen, R. S. Laramee, R. Van Liere, K.-L. Ma, W. Ribarsky, G. Scheuermann, and D. Silver, “Data, information, and knowledge in visualization,” IEEE Computer Graphics and Applications, vol. 29, no. 1, 2009.

E. Kalogerakis, S. Christodoulakis, and N. Moumoutzis, “Coupling ontologies with graphics content for knowledge driven visualization,” in Virtual Reality Conference, 2006, pp. 43–50, IEEE, 2006.

A. Unwin, M. Theus, and H. Hofmann, Graphics of large datasets: visualizing a million. Springer Science & Business Media, 2006.

E. J. Wegman, “Huge data sets and the frontiers of computational feasibility,” Journal of Computational and Graphical Statistics, vol. 4, no. 4, pp. 281–295, 1995.

M. Tory and T. Moller, “Rethinking visualization: A high-level taxonomy,” in Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on, pp. 151–158, IEEE, 2004.

M. S. T. Carpendale, “Considering visual variables as a basis for information visualisation,” tech. rep., University of Calgary, Calgary, AB, 2003.

P. Rautek, S. Bruckner, and E. Groller, “Semantic layers for illustrative volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1336–1343, 2007.

M. Gerl, P. Rautek, T. Isenberg, and E. Gr ̈oller, “Semantics by analogy for illustrative volume visualization,” Computers & Graphics, vol. 36, no. 3, pp. 201–213, 2012.

C. R. Salama, M. Keller, and P. Kohlmann, “High-level user interfaces for transfer function design with semantics,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, 2006.

M. L. Larrea, S. R. Martig, and S. M. Castro, “Semantic based visualization: a first approach,” in X Workshop de Investigadores en Ciencias de la Computación, pp. 273–277, 2008.

M. Larrea, S. Martig, and S. Castro, “Semantics-based color assignment in visualization,” Journal of Computer Science & Technology, vol. 10, no. 1, p. 5, 2009.

M. Larrea, S. Martig, and S. Castro, “Semantics-based visualization building process,” in Computer Science & Technology Series. XVI Argentine Congress of Computer Science Selected Papers, pp. 145–155, Editorial de la Universidad de La Plata, 2011.

M. Larrea, S. Escarza, D. Urribarri, S. Castro, and e. E. B. C. e. C. G. Herrera, Alejandra, “Ontolog ́ıas y sem ́antica en el proceso de visualizaci ́on,” in XVI Workshop de Investigadores en Ciencias de la Computación, pp. 290–295, 2014.

S. Castro, M. Larrea, D. Urribarri, L. Ganuza, and S. Escarza, “Métricas, tcnicas y semntica para la visualizaci ́on de datos,” in XX Workshop de Investigadores en Ciencias de la Computación, pp. 361–365, 2018.

N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide to creating your first ontology,” Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, Stanford Knowledge Systems Laboratory, march 2001.

M. A. Abbas, W. F. W. Ahmad, and K. S. Kalid, “Semantic web technologies for pre-school cognitive skills tutoring system.,” J. Inf. Sci. Eng., vol. 30, no. 3, pp. 835–851, 2014.

V. Haarslev, K. Hidde, R. M ̈oller, and M. Wessel, “The racerpro knowledge representation and reasoning system,” Semantic Web, vol. 3, no. 3, pp. 267–277, 2012.

R. Boyer and D. Savageau,Places rated almanac: Your guide to finding the best places to live in America. Rand McNally & Co., 1985.

Published
2019-10-10
How to Cite
Urribarri, D., Larrea, M., & Castro, S. (2019). Automatic suggestions to improve the quality of scatterplots during its creation. Journal of Computer Science and Technology, 19(2), e10. https://doi.org/10.24215/16666038.19.e10
Section
Original Articles