Formulation of an optimal academic exam

  • Enrique E. Tarifa Faculty of Engineering, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, 4600, Argentina
  • Sergio L. Martínez Faculty of Engineering, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, 4600, Argentina
  • Samuel Franco Domínguez Faculty of Engineering, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, 4600, Argentina
  • Jorgelina F. Argañaraz Faculty of Engineering, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, 4600, Argentina
Keywords: Academic evaluation, optimization, probabilistic analysis

Abstract

The aim of this paper is to formulate an optimal academic exam for a given subject. To do this, the probability is first modelled of a student passing the exam according to the number of units he studies and the professor evaluates. That simulation model is developed by performing a probabilistic analysis. An optimal exam is then defined as the one that awards the grade that the student deserves. Therefore, in an optimal exam, approve those who deserve to approve, and disapprove those that do not deserve to approve. Besides, this exam must respect the limitations of time and effort that the professor imposes. Based on this definition and using the simulation model, an INLP type optimization model is formulated. This optimization model determines the number of units the professor must evaluate to maximize the probability of getting an optimal exam.

Downloads

Download data is not yet available.

References

[1] E. Tarifa, S. Martínez, S. Franco Domínguez and J. Argañaraz, “Formulación de un Examen Óptimo,” in XXIII Congreso Argentino de Ciencias de la Computación (CACIC 2017), pp. 322–331, 2017.
[2] P. Frola and J. Velásquez, Competencias docentes para la evaluación cuantitativa delaprendizaje. D. F. México: Centro de
[3] J. Tata, “Grade Distributions, Grading Procedures, and Students' Evaluations of Instructors: A Justice Perspective”, The Journal of Psychology, vol. 133, no. 3, pp. 263–271, 1999.
[4] D. Close, “Fair Grades,” Teaching Philosophy, vol. 32, no. 4, pp. 361–398, 2009.
[5] J. Jones Miller, “A Better Grading System: Standards-Based, Student-Centered Assessment”, English Journal, vol. 103, no. 1, pp. 111–118, 2013.
[6] F. Trillo Alonso and M. Porto Currás, “La percepción de los estudiantes sobre su evaluación en la universidad. Un estudio en la facultad de ciencias de la educación,” Innovación Educativa, no. 9, pp. 55–75, 1999.
[7] J. Álamo Serrano, “Nuevas posibilidades de evaluación usando las TIC’s: un vistazo a cuatro Educación Superior, Valencia: Universidad de Valencia, 2018, pp. 54–73.
[8] J. González-Santander and G. Martín, “Análisis de la fórmula para la calificación de pruebas tipo test multi-respuesta,” Nereis. Revista Iberoamericana Interdisciplinar de Métodos, no. 3, pp. 53–59, 2010.
[9] C. Huapaya, F. Lizarralde and G. Arona, “Modelo basado en Lógica Difusa para elDiagnóstico Cognitivo del Estudiante,” Formación universitaria, vol. 5, no. 1, pp. 13–20, 2012.
[10]G. Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications (Series on Advances in Mathematics for Applied Sciences). New York: World Scientific Publishing Company, 1996.
[11]C. Walck, Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists. Stockholm: University of Stockholm, 2007.
Published
2018-10-09
How to Cite
Tarifa, E. E., Martínez, S. L., Domínguez, S. F., & Argañaraz, J. F. (2018). Formulation of an optimal academic exam. Journal of Computer Science and Technology, 18(02), e19. https://doi.org/10.24215/16666038.18.e19
Section
Original Articles