Efficient Iris Recognition Management in Object-Related Databases

  • Carlos Alvez Facultad de Ciencias de la Administración, Universidad Nacional de Entre Ríos, Concordia, 3200, Argentina
  • Ernesto Miranda Facultad de Ciencias de la Administración, Universidad Nacional de Entre Ríos, Concordia, 3200, Argentina
  • Graciela Etchart Facultad de Ciencias de la Administración, Universidad Nacional de Entre Ríos, Concordia, 3200, Argentina
  • Silvia Ruiz Facultad de Ciencias de la Administración, Universidad Nacional de Entre Ríos, Concordia, 3200, Argentina
Keywords: IrisCode, index, database, object relational, extension


Biometric applications have grown significantly in recent years, particularly iris-based systems. In the present work, an extension of an Object Relational Database Management System for the integral management of a biometric system based on the human iris was presented. Although at present, there are many database extensions for different domains, in no case for biometric applications. The proposed extension includes both the extension of the type system and the definition of domain indexes for performance improvement. The aim of this work is to provide a tool that facilitates the development of biometric applications based on the iris feature. Its development is based on a reference architecture that includes both the management of images of the iris trait, its associated metadata and the necessary methods for both manipulation and queries. An implementation of the extension is performed for PostgreSQL DBMS, and SP-GiST framework is used in the implementation of a domain index. Experiments were carried out to evaluate the performance of the proposed index, which shows improvements in query execution times.


Download data is not yet available.


[1] S. Pelski, Oracle Multimedia Reference, 11g Release 2 (11.2). Part. E10776-03, 2010.
[2] C. Murray, Oracle Database Semantic Technologies Developer's Guide, 11g Release 2 (11.2). Part. E25609-06, 2014.
[3] “PostGIS 2.3.4 Developer Manual - SVN Revision (15474)”. Available at: http://postgis.net/stuff/postgis-2.3.pdf. Accessed on 2016-12-15.
[4] E. Belden, C. Timothy and D. Dinesh, Data Cartridge Developer's Guide - 11g Release 2 (11.2) - Part. E10765-02, 2010.
[5] “Extensiones en PostgreSQL. Chapter 35. Extending SQL”. Available at: https://www.postgresql.org/docs/9.5/static/extend.html. Accessed on 2016-12-15.
[6] C. Alvez, G. Etchart, S. Ruiz, E. Miranda and J. Aguirre, Extensión de una base de datos Objeto-Relacional para el soporte de datos de iris. XXIII Congreso Argentino de Ciencias de la Computación (CACIC 2017), pp. 578-587, 2017.
[7] R. Mukherjee and A. Ross, Indexing iris images. 19th International Conference on Pattern Recognition, Tampa, FL, pp. 1-4, 2008.
[8] N. Poonguzhali and M. Ezhilarasan, Iris Indexing Techniques: A Review. International Journal of Computer Applications. no. 73. pp 23-29, 2013.
[9] R. Mukherjee, Indexing Techniques for Fingerprint and Iris Databases. Master thesis, College of Engineering and Mineral Resources at West Virginia University, 2007.
[10] J. Daugman, High con dence visual recognition of people by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 15(11), pp. 1148-1161, 1993.
[11] J. Daugman and C. Downing, Effect of severe image compression on iris recognition performance, IEEE Transactions on Information Forensics and Security, vol. 3, no. 1, p. 52–61, 2008.
[12]A. W. K. Kong, D. Zhang and M. S. Kamel, An Analysis of IrisCode, in IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 522-532, 2010.
[13]P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord and J. Stafford, Documenting Software Architectures: Views and Beyond. 2nd Edition. Addison-Wesley Professional. 2010.
[14]S. Ruíz, G. Etchart, C. Alvez, E. Miranda, M. Benedetto and J. Aguirre, Iris Information Management in Object-Relational Databases. XXI Congreso Argentino de Ciencias de la Computación (CACIC 2015), pp. 741-750, 2015.
[15]B. Wing, ANSI/NIST-ITL 1-2011. Update: 2015. Information Technology: American National Standard for Information Systems Data Format for the Interchange of Fingerprint, Facial; Other Biometric Information, 2015.
[16] ISO/IEC 15444-1:2004 Information Tecnology-JPEG 2000 Image Coding System: Core Coding System, Second Edition, 2004.
[17] ISO/IEC 15948:2004 Information Tecnology-Computer Graphics and Image Processing Portable Netware Graphics (PNG): Functional Specification, First Edition, 2004.
[18] J. Melton, (ISO-ANSI Working Draft) Foundation (SQL/Foundation), ISO/IEC 9075-2:2003 (E), United States of America (ANSI), 2003.
[19]C. Alvez and A. Vecchietti, Combining Semantic and Content Based Image Retrieval in ORDBMS. Knowledge-Based and Intelligent Information and Engineering Systems Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, vol. 6277/2010, pp. 44-53, 2010.
[20]C. Alvez, Models for the recovery of similaritybased images in Object-Relational Databases. PhD thesis. Universidad Tecnológica Nacional, Regional Santa Fe, Argentina, 2012.
[21]H. Proença, Iris Biometrics: Indexing and Retrieving Heavily Degraded Data. IEEE Transactions on Information Forensics and Security, vol. 8, no. 12, pp. 1975-1985, 2013.
[22] R. Laganiere, OpenCV 3 - Transforming and Filtering Images [Video]. Packt, 2017.
[23]L. Masek, Recognition of human iris patterns for biometric identification. Master thesis. School of Computer Science and Software Engineering, University of Western Australia, 2003.
[24]N. Othman, B. Dorizzi and S. Garcia-Salicetti, Osiris. Journal Pattern Recognition Letters archive. vol. 82 Issue P2, pp. 124-131. Elsevier Science Inc. New York, NY, USA, 2016.
[25]Y. Lee, R. J. Micheals, P. J. Phillips and J. J. Filliben, VASIR: An Open-Source Research Platform for Advanced Iris Recognition Technologies, Journal of Research of NIST, vol. 118, pp. 218-259, 2013.
[26] “NIEM National Information Exchange Model: Biometric Schema Version 1.0”. Available at: http://release.niem.gov/niem/domains/biometrics/3.2/. Accessed on 2017-03-30.
[27]E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquın, Searching in metric spaces. ACM Computing Surveys, vol. 33(3), pp. 273–321, 2001.
[28]W. Burkhard and R. Keller, Some approaches to best-match file searching. Communications of the ACM. ACM New York, NY, USA, vol. 16(4), pp. 230–236, 1973.
[29]W. Aref and I. Ilyas, SP-GiST: An Extensible Database Index for Supporting Space Partitioning Trees, Journal of Intelligent Information Systems (JIIS), (2/3), pp. 215 -240, 2001.
[30]“CASIA Iris Database, CASIA-IrisV4-Thousand”. Available at: http://http://biometrics.idealtest.org/#. Accessed on 2018-01-03.
How to Cite
Alvez, C., Miranda, E., Etchart, G., & Ruiz, S. (2018). Efficient Iris Recognition Management in Object-Related Databases. Journal of Computer Science and Technology, 18(02), e12. https://doi.org/10.24215/16666038.18.e12
Original Articles