Accuracy of Bluetooth based Indoor Positioning using different Pattern Recognition Techniques

  • María Rodríguez-Damián Department of Computer Science, University of Vigo, 36310, Vigo, Spain
  • Xosé A. Vila Department of Computer Science, University of Vigo, 36310, Vigo, Spain
  • Leandro Rodríguez-Liñares Department of Computer Science, University of Vigo, 36310, Vigo, Spain
Keywords: Bluetooth, indoor location, indoor positioning

Abstract

Object indoor location is a field that receives much research effort but that is lacking enough maturity for its integration in popular devices like mobile phones. This paper describes the results of an experiment carried out to compare different pattern recognition algorithms in order to process the information from a set of Bluetooth transmitters, located in fixed positions, with the aim of locating an object in a precise position. Our conclusion is that the best algorithms, among the five we tested, are random forests and model-based clustering, which gave accuracies around 90%. We have also conducted experiments to analyse the influence of the number of Bluetooth transmitters and to determine the sets of features with better performance. The proposed approach is simple and gives 90% of accuracy for locating objects with 1 m precision, making it suitable for a wide range of applications.

Downloads

Download data is not yet available.

References

L. Mainetti, L. Patrono and I. Sergi, “A survey on indoor positioning systems,” in 22nd International Conference on Software, Telecommunications and Computer Networks, 2014.

A. K. Nuaimi and H. Kamel, “A survey of indoor positioning systems and algorithms,” in International Conference on Innovations in Information Technology, 2011.

R. Want and A. Hopper, “Active badges and personal interactive computing objects,” IEEE Transactions on Consumer Electronics, vol. 38, no. 1, pp. 10-20.

A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster, “The anatomy of a context-aware application,” Wireless Networks, vol. 8, no. 2/3, pp. 187-197, 2002.

N. Priyantha, A. Chakraborty and B. H., “The cricket location-support system,” in Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, 2000.

L. Ni, Y. Liu, Y. Lau and P. A.P., “LANDMARC: indoor location sensing using active RFID,” Wireless networks, vol. 10, no. 6, pp. 701-710, 2004.

F. Li, C. Zhao, G. Ding, J. Gong and C. a. Z. F. Liu, “A reliable and accurate indoor localization method using phone inertial sensors,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, 2012.

L. Zhang, X. Liu, J. Song, C. Gurrin and Z. Zhu, “A comprehensive study of bluetooth fingerprinting-based algorithms for localization,” in 27th International Conference on Advanced Information Networking and Applications Workshops, March, 2013.

W. Loh, “Classification and regression trees,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32, 2001.

R. Genuer, J. Poggi and C. Tuleau-Malot, “Variable selection using random forests,” Pattern Recognition Letters, vol. 31, no. 14, pp. 2225-2236, 2010.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273-297, 1995.

A. Jain, “Data clustering: 50 years beyond Kmeans,” Pattern recognition letters, vol. 31, no. 8, pp. 651-666, 2010.

C. Fraley and A. Raftery, “Model-based clustering, discriminant analysis, and density estimation,” 2002.

R Core Team, “R: A language and environment for statistical computing. R Foundation for Statistical Computing,” Vienna, 2016.

M. Kuhn, “Caret: Classification and Regression Training. R package v. 6.0-71,” 2016.

L. Breiman, “Random Forests for Classification and Regression. R package v.4.6-12,” 2015.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, C. Chang and C. Lin, “Misc Functions of the Department of Statistics. Probability Theory Group (Formerly:E1071), TU WienE1071. R package v.1.6-8.,” 2015.

C. Fraley and A. E. Raftery, “MCLUST version 3: an R package for normal mixture modeling and model-based clustering.,” Washington Univ Seattle Dept of Statistics.

G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Transactions on Information Theory, vol. 14, no. 1, pp. 55-63, 1968.

J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-Gaussian clustering,” Biometrics, pp. 803-821, 1993.

H. Bensmail and G. Celeux, “Regularized Gaussian discriminant analysis through eigenvalue decomposition,” Journal of the American statistical Association, vol. 91, no. 436, pp. 1743-1748, 1996.

Published
2019-04-17
How to Cite
Rodríguez-Damián, M., Vila, X. A., & Rodríguez-Liñares, L. (2019). Accuracy of Bluetooth based Indoor Positioning using different Pattern Recognition Techniques. Journal of Computer Science and Technology, 19(01), e01. https://doi.org/10.24215/16666038.19.e01
Section
Original Articles